• 제목/요약/키워드: Active Damper

검색결과 458건 처리시간 0.027초

반능동형 오리피스 유체댐퍼의 성능 실험 (Experimental Study on the Performance of a Semi-Active Orificed Fluid Damper)

  • 문석준;김병현;정종안
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.387-394
    • /
    • 2003
  • A compromise between passive and active control systems has been developed recently in the form of semi-active control systems. Semi-active control systems maintain the reliability of passive control systems while taking advantage of the adjustability of an active control system. This paper presents the results of an experimental study to evaluate the performance of a semi-active orificed fluid damper. The semi-active orificed fluid damper considered is a two-stage damper with normally open solenoid valve. Through a series of experimental tests, characteristics and performance of the damper is investigated.

  • PDF

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • 제16권5호
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

Control of a building complex with Magneto-Rheological Dampers and Tuned Mass Damper

  • Amini, F.;Doroudi, R.
    • Structural Engineering and Mechanics
    • /
    • 제36권2호
    • /
    • pp.181-195
    • /
    • 2010
  • Coupled building control is a viable method to protect tall buildings from seismic excitation. In this study, the semi-active control of a building complex is investigated for mitigating seismic responses. The building complex is formed of one main building and one podium structure connected through Magneto-Rheological (MR) Dampers and Tuned Mass Damper. The conventional semi-active control techniques require a primary controller as a reference to determine the desired control force, and modulate the input voltage of the MR damper by comparing the desired control force. The fuzzy logic directly determines the input voltage of an MR damper from the response of the MR damper. The control performance of the proposed fuzzy control technique for the MR damper is evaluated for the control problem of a seismically-excited building complex. In this paper, a building complex that include a 14-story main building and an 8-story podium structure is applied as a numerical example to demonstrate the effectiveness of semi-active control with Magneto-Rheological dampers and its comparison with the passive control with the Tuned Mass Damper and two uncoupled buildings and hybrid semi-active control including the Tuned Mass Damper and Magneto-Rheological dampers while they are subject to the earthquake excitation. The numerical results show that semi-active control and hybrid semi-active control can significantly mitigate the seismic responses of both buildings, such as displacement and shear force responses, and fuzzy control technique can effectively mitigate the seismic response of the building complex.

Full-scale experimental verification on the vibration control of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Liu, Jiangyun;Sun, Limin
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.1003-1021
    • /
    • 2015
  • MR dampers have been proposed for the control of cable vibration of cable-stayed bridge in recent years due to their high performance and low energy consumption. However, the highly nonlinear feature of MR dampers makes them difficult to be designed with efficient semi-active control algorithms. Simulation study has previously been carried out on the cable-MR damper system using a semi-active control algorithm derived based on the universal design curve of dampers and a bilinear mechanical model of the MR damper. This paper aims to verify the effectiveness of the MR damper for mitigating cable vibration through a full-scale experimental test, using the same semi-active control strategy as in the simulation study. A long stay cable fabricated for a real bridge was set-up with the MR damper installed. The cable was excited under both free and forced vibrations. Different test scenarios were considered where the MR damper was tuned as passive damper with minimum or maximum input current, or the input current of the damper was changed according to the proposed semi-active control algorithm. The effectiveness of the MR damper for controlling the cable vibration was assessed through computing the damping ratio of the cable for free vibration and the root mean square value of acceleration of the cable for forced vibration.

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

반능동 현가시스템의 Robust 제어 법칙 (A Robust Semi-active Suspension Control Law)

  • 이경수;서명원;오태일
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.117-126
    • /
    • 1994
  • This paper deals with a robust semi-active control algorithm which is applicable to a semi-active suspension with a multi-state damper. Since the controllable damping rates are discrete in case of a multi-state semi-active damper, the desired damping rate can not be produced exactly even if force-velocity relations of a multi-state semi-active damper is completely known. In addition, damping characteristics of the semi-active dampers are different from damper to damper. A robust nonlinear control law based on sliding control is developed. The main objective of the proposed control strategies is to improve ride quality by tracking the desired active force with a multi-state damper of which the force-velocity relations are "not" completely known. The performance of th proposed semi-active control law is numerically compared to those of the control law based on a bilinear model and a passive suspension. The proposed control algorithm is robust to nonlinear characteristics and uncertainty of the force-Velocity relations of multi-state dampers.

  • PDF

Closed-loop active vibration control of a typical nose landing gear with torsional MR fluid based damper

  • Sateesh, B.;Maiti, Dipak K.
    • Structural Engineering and Mechanics
    • /
    • 제31권1호
    • /
    • pp.39-56
    • /
    • 2009
  • Vibration is an undesirable phenomenon in a dynamic system like lightly damped aerospace structures and active vibration control has gradually been employed to suppress vibration. The objective of the current investigation is to introduce an active torsional magneto-rheological (MR) fluid based damper for vibration control of a typical nose landing gear. They offer the adaptability of active control devices without requiring the associated large power sources. A torsional damper is designed and developed based on Bingham plastic shear flow model. The numerical analysis is carried out to estimate the damping coefficient and damping force. The designed damper is fabricated and an experimental setup is also established to characterize the damper and these results are compared with the analytical results. A typical FE model of Nose landing gear is developed to study the effectiveness of the damper. Open loop response analysis has been carried out and response levels are monitored at the piston tip of a nose landing gear for various loading conditions without damper and with MR-damper as semi-active device. The closed-loop full state feedback control scheme by the pole-placement technique is also applied to control the landing gear instability of an aircraft.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

반능동형 현가시스템을 위한 연속가변댐퍼의 특성 해석 (Analysis of Continuously Variable Damper Characteristics for Semi-Active Suspension Systems)

  • 허승진;박기홍
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.128-137
    • /
    • 2003
  • Continuously variable damper can yield diverse damping forces for a single damping velocity. It is widely used in the semi-active suspension system since, with right control logics, it can enhance ride comfort compared to the passive damper while not degrading driving safety. A key to the successful design of the continuously variable damper is the knowledge of its complex and nonlinear characteristics. In this paper, research has been done for analyzing characteristics of the continuously variable damper. Various damper components have been investigated and their effects upon the force-velocity characteristics of the damper have been examined. The effects of the damper characteristics change upon ride comfort and driving safety have also been investigated by numerical simulations.

반능동 ER댐퍼의 스카이훅 제어 (Skyhook Control of a Semi-Active ER Damper)

  • 이육형;박명관
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, skyhook control of a semi-active ER(Electro-Rheological) damper is investigated. The strength of the ER damper is controlled by a high voltage power supply. This paper deals with a two-degree-of-freedom suspension using the damper with ERF for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using skyhook and Linear Quadratic Regulator(LQR) optimal control method. Computer simulation and experimental results show that the semi-active suspension with ERF damper has good performances of ride quality.

  • PDF