• Title/Summary/Keyword: Active Contour Segmentation

Search Result 79, Processing Time 0.02 seconds

Automatic Carotid Artery Image Segmentation using Snake Based Model (스네이크모델을 기반으로 한 경동맥 이미지분할)

  • Chaudhry, Asmatullah;Hassan, Mehdi;Khan, Asifullah;Choi, Seung Ho;Kim, Jin Young
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.115-122
    • /
    • 2013
  • Disease diagnostics based on medical imaging is getting popularity day by day. Presence of the atherosclerosis is one of the causes of narrowing of carotid arteries which may block partially or fully blood flow into the brain. Serious brain strokes may occur due to such types of blockages in blood flow. Early detection of the plaque and taking precautionary steps in this regard may prevent from such type of serious strokes. In this paper, we present an automatic image segmentation technique for carotid artery ultrasound images based on active contour approach. In our experimental study, we assume that ultrasound images are properly aligned before applying automatic image segmentation. We have successfully applied the automatic segmentation of carotid artery ultrasound images using snake based model. Qualitative comparison of the proposed approach has been made with the manual initialization of snakes for carotid artery image segmentation. Our proposed approach successfully segments the carotid artery images in an automated way to help radiologists to detect plaque easily. Obtained results show the effectiveness of the proposed approach.

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

Three-Dimensional Active Shape Models for Medical Image Segmentation (의료영상 분할을 위한 3차원 능동 모양 모델)

  • Lim, Seong-Jae;Jeong, Yong-Yeon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.55-61
    • /
    • 2007
  • In this paper, we propose a three-dimensional(3D) active shape models for medical image segmentation. In order to build a 3D shape model, we need to generate a point distribution model(PDM) and select corresponding landmarks in all the training shapes. The manual determination method, two-dimensional(2D) method, and limited 3D method of landmark correspondences are time-consuming, tedious, and error-prone. In this paper, we generate a 3D statistical shape model using the 3D model generation method of a distance transform and a tetrahedron method for landmarking. After generating the 3D model, we extend the shape model training and gray-level model training of 2D active shape models(ASMs) and we use the integrated modeling process with scale and gray-level models for the appearance profile to represent the local structure. Experimental results are comparable to those of region-based, contour-based methods, and 2D ASMs.

A Study on Pr-Process for GGF Snake Algorithm (GGF Snake Algorithm을 위한 전처리 과정의 연구)

  • Cho, Y.B.;Yoon, S.W.;Kang, S.G.;Bang, N.S.;Min, S.D.;Jang, Y.H.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2798-2800
    • /
    • 2003
  • Active contour models(called Snakes) are methods for the image segmentation. Many researchers have developed snake algorithms and then published such as GVF, GGF snake. In this paper, we present a pre-process for GGF snake algorithm. This process removes noise so that snakes can flow smoothly. In experiment, we compared a image removed noise with a image corrupted by noise. In result, the pre-process produced a good image for GGF Snake and is necessary.

  • PDF

Region-based Image Retrieval Algorithm Using Image Segmentation and Multi-Feature (영상분할과 다중 특징을 이용한 영역기반 영상검색 알고리즘)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.57-63
    • /
    • 2009
  • The rapid growth of computer-based image database, necessity of a system that can manage an image information is increasing. This paper presents a region-based image retrieval method using the combination of color(autocorrelogram), texture(CWT moments) and shape(Hu invariant moments) features. As a color feature, a color autocorrelogram is chosen by extracting from the hue and saturation components of a color image(HSV). As a texture, shape and position feature are extracted from the value component. For efficient similarity confutation, the extracted features(color autocorrelogram, Hu invariant moments, and CWT moments) are combined and then precision and recall are measured. Experiment results for Corel and VisTex DBs show that the proposed image retrieval algorithm has 94.8% Precision, 90.7% recall and can successfully apply to image retrieval system.

Extended Snake Algorithm Using Color Variance Energy (컬러 분산 에너지를 이용한 확장 스네이크 알고리즘)

  • Lee, Seung-Tae;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.83-92
    • /
    • 2009
  • In this paper, an extended snake algorithm using color variance energy is proposed for segmenting an interest object in color image. General snake algorithm makes use of energy in image to segment images into a interesting area and background. There are many kinds of energy that can be used by the snake algorithm. The efficiency of the snake algorithm is depend on what kind of energy is used. A general snake algorithm based on active contour model uses the intensity value as an image energy that can be implemented and analyzed easily. But it is sensitive to noises because the image gradient uses a differential operator to get its image energy. And it is difficult for the general snake algorithm to be applied on the complex image background. Therefore, the proposed snake algorithm efficiently segment an interest object on the color image by adding a color variance of the segmented area to the image energy. This paper executed various experiments to segment an interest object on color images with simple or complex background for verifying the performance of the proposed extended snake algorithm. It shows improved accuracy performance about 12.42 %.

Improved Shape Extraction Using Inward and Outward Curve Evolution (양방향 곡선 전개를 이용한 개선된 형태 추출)

  • Kim Ha-Hyoung;Kim Seong-Kon;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • Iterative curve evolution techniques are powerful methods for image segmentation. Classical methods proposed curve evolutions which guarantee close contours at convergence and, combined with the level set method, they easily handled curve topology changes. In this paper, we present a new geometric active contour model based on level set methods introduced by Osher & Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. Classical methods allow only one-way curve evolutions : shrinking or expanding of the curve. Thus, the initial curve must encircle all the objects to be segmented or several curves must be used, each one totally inside one object. But our method allows a two-way curve evolution : parts of the curve evolve in the outward direction while others evolve in the inward direction. It offers much more freedom in the initial curve position than with a classical geodesic search method. Our algorithm performs accurate and precise segmentations from noisy images with complex objects(jncluding sharp angles, deep concavities or holes), Besides it easily handled curve topology changes. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image.

  • PDF

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.

Automatic Extraction of Ascending Aorta and Ostium in Cardiac CT Angiography Images (심장 CT 혈관 조영 영상에서 대동맥 및 심문 자동 검출)

  • Kim, Hye-Ryun;Kang, Mi-Sun;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • Computed tomographic angiography (CTA) is widely used in the diagnosis and treatment of coronary artery disease because it shows not only the whole anatomical structure of the cardiovascular three-dimensionally but also provides information on the lesion and type of plaque. However, due to the large size of the image, there is a limitation in manually extracting coronary arteries, and related researches are performed to automatically extract coronary arteries accurately. As the coronary artery originate from the ascending aorta, the ascending aorta and ostium should be detected to extract the coronary tree accurately. In this paper, we propose an automatic segmentation for the ostium as a starting structure of coronary artery in CTA. First, the region of the ascending aorta is initially detected by using Hough circle transform based on the relative position and size of the ascending aorta. Second, the volume of interest is defined to reduce the search range based on the initial area. Third, the refined ascending aorta is segmented by using a two-dimensional geodesic active contour. Finally, the two ostia are detected within the region of the refined ascending aorta. For the evaluation of our method, we measured the Euclidean distance between the result and the ground truths annotated manually by medical experts in 20 CTA images. The experimental results showed that the ostia were accurately detected.