• Title/Summary/Keyword: Active Array Radar

Search Result 83, Processing Time 0.05 seconds

Development of Radar Environmental Signals Simulator for Simulating Sub-array Receiving Signals of Active Phased Array Multi-function Radar (능동위상배열 다기능레이다의 부배열 수신신호 모의를 위한 레이다환경신호모의장비 개발)

  • Kim, Gukhyun;Yoo, Kyungjoo;Lee, Kyungmin;Gil, Sungjun;Yang, Eunho;Lee, Kwangchul;Lee, Heeyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.452-458
    • /
    • 2020
  • In this paper, the contents of the development of RESS(Radar Environmental Signals Simulator) for the test of active phased array multi-function radar are described. The developed RESS can simulate multiple target environments, such as target/jamming/missile response/cluster signals, by using received radar operational information and simulated scenario. It can also modulate frequency, phase, gain, timing on all waveforms operated by multi-function radar and simulated two targets and one jamming in the beam. The RESS can be used to perform functional and performance verification of the active phased array multi-function radar with sub-array receiving structures.

Design and Fabrication of an L-Band Digital TR Module for Radar (레이다용 L대역 디지털 송수신모듈 설계 및 제작)

  • Lim, Jae-Hwan;Park, Se-Jun;Jun, Sang-Mi;Jin, Hyung-Suk;Kim, Kwan-Sung;Kim, Tae-Hun;Kim, Jae-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.857-867
    • /
    • 2018
  • Active array radar is evolving into digital active array radar. Digital active array radar has many advantages for making several simultaneous radar beams from the digital receive data of each element. A digital-type transceiver(TR) module is suitable for this goal in radar. In this work, the design results of an L-band digital TR module are presented to verify the possibility of fabrication for a digital active array antenna. This L-band digital TR module consists of a gallium-nitride-type HPA to achieve a more than 350-W peak output power and one-chip transceivers that include a digital waveform generator and analog digital converter. The receiving gain was 47 dB, the noise figure was less than 2 dB, and the final output type of the four channel receiving paths was one optic signal.

Design and Measurement of Active Phased Array Radar Digital Receiver (능동 위상 배열 레이더의 디지털 수신기 제작 및 측정)

  • Kim, Tae-Hwan;Lee, Sung-Ju;Lee, Dong-Hwi;Hong, Yun-Seok;Cho, Choon-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.371-379
    • /
    • 2011
  • Active phased array antenna structure is used for modern multi-function radars. To search targets in high clutter environment, the radar receiver needs high dynamic range performance. Though active phased array antenna structure lead to increase of SNR, the SFDR is not increased. In this paper, high SFDR receiver of X-band active phased array radar was designed and manufactured. One channel digital receiver is connected to 32 T/R modules and one PCB assembly is composed to 2 channel digital receivers with RF part, ADC part, LO distribution part and digital down conversion part. A commercial FIFO board was used for digital receiver measurement about major performance in digital output signal condition. The measured digital receiver gain and SFDR is 33 dB and more than 81 dBc each.

A Study on Waveguide Slotted Active Phased Array Radar Target Information Error Compensation Technique (도파관 슬롯 방식의 능동위상배열레이더 표적정보 오차보상기법 연구)

  • Yoo, Dong-gil;Kim, Duck-hwan;Kim, Han-Saeng;Lee, Ki-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • The waveguide slotted active phased array radar is characterized in that the beam is tilt in a specific direction when the feeding position of the antenna is not in the center of the antenna. If the beam deflection phenomenon is not properly compensated, error bias is generated in the target information collected by the radar, and the target accuracy is lowered. In this paper, we describe a technique to compensate the error of the target information that is collected in the active phased array radar of the waveguide slot type instead of the center of the antenna.

A Transmission Technique of Multichannel Receiver Data for the Phased-Array Radar (위상 배열레이더의 다채널 수신 데이터 전송 기법)

  • Jeong, Myung-Deuk;Kim, Han-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1188-1195
    • /
    • 2012
  • The trend for the development of radar is the active phased-array radar system. The trade-off between the processing speed and the number of the signal process board for the real time signal processing has to be optimized particularly in multichannel radar system. This paper introduces a transmission technique in order to transmit a large amount of received data from an Antenna Part to Signal Process Part. As a result, the number of the S/L board(COTS board) is reduced to one half, and the margin of the data transmission rate is about 2 times higher than the original method.

Effective Beam Structure for Multi-Target Detection and Tracking in the Active Electrically Scanned Array Radar (능동위상배열 레이더에서 다중표적 탐지/추적을 위한 효과적인 빔 구조 연구)

  • Lee, Joo-Hyun;Lee, Seok-Gon;Park, Dae-Sung;Cho, Byung-Lae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1069-1076
    • /
    • 2014
  • This paper presents an efficient receive beam structure able to search and track the simultaneous bundle targets with the active electrically scanned array radar. One of the characteristic with the active phased array radar is to point toward wanted direction and to forming simultaneously the digital multi-beam. This paper proposes method to detect and track rapidly bundle targets coming to radar using the digital beam forming. The proposed the beam forming method in the paper is evaluated about the angle accuracy of targets via a computer simulation.

Study on Front-End Receiver for S-band Active Phased Array Radar (S-대역 능동위상배열레이더용 수신전단기 연구)

  • Kim, Min-Chul;Kim, Wan-Sik;Park, Sang-Hyun;Jeong, Myeong-Deuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.825-832
    • /
    • 2011
  • In this paper, we described the design and measurement results of a Front-End Receiver for S-band active phased array radar. The Front-End Receiver has input P1dB of -4dBm and IIP3 of 7dBm. The measurement results show that gain is $24{\pm}0.7dB$, noise figure are less than 2.3dB over the frequency range of $fc{\pm}0.2GHz$. The Front-End Receiver can protect the receiver path from large input signals with a maximum peak power of multi-kW and recovery time is less than 0.8us. The measurement results satisfy all specifications.

The Fabrication of Compact Active Array Antenna for Drone Detection Radar (드론 탐지 레이다용 위상배열안테나 설계 및 구현)

  • Lim, Jae-Hwan;Jin, Hyoung-Suk;Lee, Jong-Hyun
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.703-709
    • /
    • 2021
  • As drone technology advances, the risks of drones are increasing, then technology to detect drones is becoming important. In this thesis, it was verified that miniaturized and lightweighted active array antenna could be used for radar system to detect drones in reality. The transmit-receive module was designed in the form of tile-type to simplify interconnections between devices. The waveform generation module and the down conversion module were miniaturized to include in one body too. As a result of verifing the detection performance through test, it was confirmed that the detection range was over 3.7Km.

Miniaturization Development of Transmit/Receive Module using a 10W MEMS switch (10W급 MEMS 스위치를 이용한 송수신모듈 소형화 개발)

  • Yi, Hui-min;Jun, Byoung-chul;Lee, Bok-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2417-2424
    • /
    • 2016
  • Small size and light weight is very important for components used in radar mounted platform such as airborne radar. Recently, the active phased array radar is developed as an array of antennas for thousands of transmit/receive modules to be used as a multi-function radar that can detect and track targets. In this case, the size and weight of the transmit/receive modules are critical factor for developing the radar. In this paper, we developed a compact transmit/receive module using the 10W RF MEMS switch domestically localizing and reduced the circuit area to about 86.5% compared to using a circulator. The developed module satisfies not only electrical requirements but also MIL-STD's environmental specifications. So it can be used in a military device. It can be used at adaptive tunable receivers, reconfigurable smart active antennas and wide band beam electrical steering antennas.

A Study on the Measurement of the Beam Pattern of Array Antenna for VHF Radar using Active Beam Pattern Measuring Device and Drone (능동 빔패턴 측정장치 및 드론을 활용한 초단파레이다용 배열안테나의 빔패턴 측정에 대한 연구)

  • Kim, Ki-Jung;Lee, Sung-Je;Jang, Youn-Hui
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1031-1036
    • /
    • 2019
  • This study describes the technique of the beam pattern measurement of array antenna for VHF band radar using drone and active beam pattern measuring device. There is no anechoic chamber for measuring the beam pattern of a large size antenna in the country. In this study, to test the antenna beam pattern characteristics of the developed VHF band radar, the antenna beam pattern characteristics were tested by Drone mounting an Active Beam Pattern Measuring Device. By comparing the results of the pre-simulation analysis with the measured results for the antenna, we could confirm that the beamwidth and side-lobe characteristics are satisfactory. Through the antenna beam pattern measurement technology using Drone and Active Beam Pattern Measuring Device, the beam pattern measurement technology of array antenna of low frequency band and large antenna for low band radar will be used.