• 제목/요약/키워드: Activation switch

검색결과 36건 처리시간 0.018초

Activation-induced Cytidine Deaminase in B Cell Immunity and Cancers

  • Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • 제12권6호
    • /
    • pp.230-239
    • /
    • 2012
  • Activation-induced cytidine deaminase (AID) is an enzyme that is predominantly expressed in germinal center B cells and plays a pivotal role in immunoglobulin class switch recombination and somatic hypermutation for antibody (Ab) maturation. These two genetic processes endow Abs with protective functions against a multitude of antigens (pathogens) during humoral immune responses. In B cells, AID expression is regulated at the level of either transcriptional activation on AID gene loci or post-transcriptional suppression of AID mRNA. Furthermore, AID stabilization and targeting are determined by post-translational modifications and interactions with other cellular/nuclear factors. On the other hand, aberrant expression of AID causes B cell leukemias and lymphomas, including Burkitt's lymphoma caused by c-myc/IgH translocation. AID is also ectopically expressed in T cells and non-immune cells, and triggers point mutations in relevant DNA loci, resulting in tumorigenesis. Here, I review the recent literatures on the function of AID, regulation of AID expression, stability and targeting in B cells, and AID-related tumor formation.

Immunosuppressive Properties of Catfish Bile from Silurus asotus: Inhibition of T Cell Activation in Mouse Splenocytes

  • Joo, Seong-Soo
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.598-602
    • /
    • 2008
  • Concentrated catfish Silurus asotus bile (SAB) containing high amounts of ursodeoxycholic acid (UDCA) and taurocholic acid may have immunosuppressive properties. To investigate the putative immunosuppressive properties of SAB, the anti-proliferation and suppression of early T cell activation markers, and the inhibition of cytokines induced by T cells in response to anti-CD3 mAb activation in mouse splenocytes were examined. The suppression of these activation repertoires are the main properties of calcineurin inhibitors. It was found that SAB effectively suppressed the activation of T cells, and cytokines from T cell activation, at levels similar to cyclosporine A, a calcineurin inhibitor. Although the mechanism in which suppression occurs is not clear, we speculate that SAB from Silurus asotus, which has been known to switch their intake habits to zoophagy during an early adult stage, may explain the suppressive effect of SAB as a result of high amounts of functional UDCA in bile. Our results suggest that the treatment or intake of SAB, either in therapy or as a food supplement, may act as an adjuvant therapy for the prevention of transplant rejection, although further investigation is required before this treatment can be applied clinically.

HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도 (High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation)

  • 이수연;주민경;전현민;김초희;박혜경;강호성
    • 생명과학회지
    • /
    • 제29권11호
    • /
    • pp.1179-1191
    • /
    • 2019
  • 암세포는 epithelial mesenchymal transition (EMT)를 통해 tumor invasion과 metastasis가 일어나며, 또한 정상세포와 다른 oncogenic metabolic phenotypes 획득 즉, glycolytic switch 등이 암 발생과 진행에 깊이 연관되어 있음이 잘 알려져 있다. High-mobility group box 1 (HMGB1)은 chromatin-associated nuclear protein으로 알려져 있으나, dying cells 또는 immune cells로부터 방출되기도 한다. 방출된 HMGB1은 damage-associated molecular pattern (DAMP)로서 작용하여 EMT 및 invasion, metastasis를 유도함으로서 tumor progression에 기여한다고 알려졌다. 본 연구에서 HMGB1에 의해 EMT와 glycolytic switch 유도되며, 이 과정은 Snail 의존적임을 확인하였다. 또한 HMGB1/Snail cascade는 COX subunits인 COXVIIa와 COXVIIc의 발현 억제를 통해 mitochondrial repression과 cytochrome c oxidase (COX) inhibition을 유도하였다. HMGB1은 Snail를 통해 glycolytic switch의 주요 효소인 hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), phosphoglycerate mutase 1 (PGAM1)의 발현을 증가시켰다. 이들 효소는 glycolytic switch에 중요하게 관여하는 것으로 알려져 있다. 이들 해당과정의 효소들을 knockdown한 결과 HMGB1에 의한 EMT를 억제함으로써 glycolysis와 HMGB1-induced EMT가 밀접하게 연관되어 있을 제시하였다. 이상의 연구 결과들은 HMGB1/Snail cascade가 EMT 및 glycolytic switch, mitochondrial repression에 중요하게 작용할 것임을 시사한다.

Single-base Discrimination Mediated by Proofreading Inert Allele Specific Primers

  • Lin-Ling, Chen;Zhang, Jia;Sommer, Steve S.;Li, Kai
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.24-27
    • /
    • 2005
  • The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by $exo^+$ DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.

무선데이터서비스 활성화를 위한 MVNO 전환의사비용 추정 (Estimating Willingness to Switch to MVNO for Activation of Mobile Data Services)

  • 이상우;고창열
    • 인터넷정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.1-11
    • /
    • 2015
  • 본 논문은 조건부 가치측정법을 이용하여 MVNO 전환의사비용을 추정하고 MVNO를 통한 무선데이터서비스 활성화를 위한 바람직한 전략을 제시하고자 한다. 연구결과 이용자의 사용패턴이나 MVNO에 대한 인식여부는 MVNO 전환비용에 영향을 미치지만 서비스 만족도는 전환비용에 유의한 영향을 미치지 않았다. 이는 현 이동통신사의 만족도와 상관없이 일정수준 이상의 요금절약이 예상 될 경우 소비자는 MVNO사업자로 가입을 전환할 수 있음을 의미한다. 또한 이동통신사업자별로 가입자 전환비용에 유의한 차이가 존재하며 시장지배적사업자의 전환비용이 가장 크게 나타났다. 이는 추가적인 규제가 존재하지 않을 경우 시장지배적 사업자로 시장 쏠림현상이 일어날 가능성이 있음을 의미한다. 따라서 무선데이터서비스 활성화를 위한 MVNO사업자들의 시장점유율 확보를 위해서는 제품이나 품질의 차이보다는 요금차별화를 통한 전략적 접근이 바람직하고, 규제기관은 이동통신사업자간 상이한 가입자충성도를 고려하여 규제정책을 수립해야 할 것이다. 본 연구는 MVNO 시장확장을 위한 전략방안 마련에 활용될 수 있을 것으로 기대되며, 규제기관의 통신정책방향에 대한 시사점을 제시할 수 있을 것으로 기대된다.

Fnr, NarL and NarP Regulation and Time Course Expression of Escherichia coli aeg-46.5 Gene

  • Ahn, Ju-Hyuk;Choe, Mu-Hyeon
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.88-91
    • /
    • 1996
  • The anaerobically expressed gene aeg-46.5, which had been identified by the operon fusion technique with a hybrid bacteriophage of ${\lambda}$ and Mu, ${\lambda}$placMu53, was studied for its expression pattern and growth. The expression of aeg-46.5 was studied in the wild-type cell and mutant cells that have mutation (s) in the control gene of anaerobic respiration (fnr) and nitrate response (narL and narP). The ${\beta}$-galactosidase reporter gene showed maximum expression in narL host after two hours of aerobic to anaerobic switch in M9-Glc-nitrate medium. Both 40 mM and 100 mM concentrations of nitrate ion in the medium had little effect on expression level. We propose that aeg-46.5 is subject to multiple regulations of anaerobic activation by Fnr, nitrate activation by NarP and repression mediated by NarL.

  • PDF

이중언어환경에서의 언어간 부호전환 수준에 따른 차별적 신경활성화 과정: ERP연구 (Differential Effect for Neural Activation Processes according to the Proficiency Level of Code Switching: An ERP Study)

  • 김충명
    • 말소리와 음성과학
    • /
    • 제2권4호
    • /
    • pp.3-10
    • /
    • 2010
  • The present study aims to investigate neural activations according to the level of code switching in English proficient bilinguals and to find the relationship between the performance of language switching and proficiency level using ERPs (event-related potentials). First, when comparing high-proficient (HP) with low-proficient (LP) bilingual performance in a native language environment, the activation level of N2 was observed to be higher in the HP group than in the LP group, but only under two conditions: 1) the language switching (between-language) condition known as indexing attention of code switching and 2) the inhibition of current language for L1. Another effect of N400 can be shown in both groups only in the language non-switching (within-language) condition. This effect suggests that both groups completed the semantic acceptability task well in their native language environment without the burden of language switching, irrespective of high or low performance. The latencies of N400 are only about 100ms earlier in the HP group than in the LP group. This difference can be interpreted as facilitation of the given task. These results suggest that HP showed the differential activation in inhibitory system for L1 in switching condition of L1-to-L2 to be contrary to inactivation of inhibitory system for the LP group. Despite the absence of an N400 effect at the given task in both groups, differential latencies between the peaks were attributed to the differences of efficiency in semantic processing.

  • PDF

ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets

  • Yurong Gao;Hanguk Ryu;Hyejin Lee;Young-Joon Kim;Ji-Hye Lee;Jaemin Lee
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100004.1-100004.11
    • /
    • 2024
  • Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R's Gq utilization rather than reversing GLP-1R's signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R's signaling, which can be used in type 2 diabetes treatment.

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

Identification of a neural pathway governing satiety in Drosophila

  • Min, Soohong;Chung, Jongkyeong
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.137-138
    • /
    • 2016
  • Satiety cues a feeding animal to cease further ingestion of food, thus protecting it from excessive energy gain. Impaired control of satiety is often associated with feeding-related disorders such as obesity. In our recent study, we reported the identification of a neural pathway that expresses the myoinhibitory peptide (MIP), critical for satiety responses in Drosophila. Targeted silencing of MIP neuron activity strikingly increased the body weight (BW) through elevated food intake. Similarly, genetic disruption of the gene encoding MIP also elevated feeding and BW. Suppressing the MIP pathway behaviorally transformed the satiated flies to feed similar to the starved ones, with augmented sensitivity to food. Conversely, temporal activation of MIP neuron markedly reduced the food intake and BW, and blunted the sensitivity of the starved flies to food as if they have been satiated. Shortly after termination of MIP neuron activation, the reduced BW reverted to the normal level along with a strong feeding rebound. Together our results reveal the switch-like role of the MIP pathway in feeding regulation by controlling satiety.