• Title/Summary/Keyword: Activation parameters

Search Result 721, Processing Time 0.03 seconds

A Quantitative Analysis of Activation Pattern of Active Elbow Muscles (주관절 근육의 활성화 유형에 대한 정량적 분석)

  • Lee, Du-Hyoung;Lee, Young-Seock;Lee, Jin;Kim, Sung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.413-420
    • /
    • 1997
  • In this paper, we analyzed the contraction patterns of active elbow muscles during isometric, concentric and eccentric contraction. The analysis parameters consist of frequency domain parameters (mean frequency, median frequency, peak frequency, peak power, skewness, kurtosis) and time domain paraseters (zero crossing, positive maxima, integrated EMG). The results of this study were as follows; The BR/BB of isometric contraction appeared to be Venter as the elbow joint was more extended. The BR /BB during concentric and eccentric contraction tended to increase with more extension of the elbow joint angle, but there was no significant difference between concentric and eccentric contraction. Further, the EMG power spectrum due to the type of contraction were different betwen eccentric and concentric contraction. According to the results, it was found that the activation pattern in elbow flexor muscles was different during three different muscle contraction pattern. Therefore, elbow flexor muscles should not be considered a single functioning unit. Especially, at the time domain analysis, IEMG is a dominant parameter for analysis of activation patterns, and the skewness kurtosis can be useful parameters in functional recognition for prosthesis control purpose.

  • PDF

Correlation between Trunk Stabilization Muscle Activation and Gait Parameters (몸통 안정화 근육과 보행요소의 상관관계)

  • Chae, Jung-Byung;Jung, Ju-Hyeon
    • PNF and Movement
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Purpose: This study aimed to investigate the correlation between trunk stabilization muscle activation and the parameters of gait analysis in healthy individuals. Methods: Thirty healthy adults (15 male, 15 female) with no history of lower back pain (LBP) or current musculoskeletal and neurological injuries were studied. Trunk stabilization muscle activation (e.g., external oblique, internal oblique, transverse abdominis, erector spinae) were assessed using surface electromyography. To analyze gait, we measured temporal parameters (e.g., gait velocity, single support phase, double support phase, swing phase, and stance phase) and a spatial parameter (e.g., H-H base of support). Results: A statistically significant correlation was found between the internal oblique, transverse abdominis, and erector spinae muscle activity and gait velocity, single support phase, double support phase, swing phase, and stance phase. No statistically significant correlation was found between the external oblique muscle activity and the gait velocity, single support phase, double support phase, swing phase, and stance phase. No statistically significant correlation was found between the external oblique, internal oblique, transverse abdominis, and erector spinae muscle activity and the spatial parameter. Conclusion: This study demonstrated that a relationship exists between trunk stabilization muscle activation and temporal parameter (i.e., gait velocity, single support phase, double support phase, swing phase, and stance phase) during gait analysis. Therefore, the trunk's stabilizer muscles play an important role in the gait of healthy individuals.

A Quantative Analysis of activation pattern of Elbow Flexor muscles during contraction (근육 수축시 주관절 굴근의 활성화 유형에 대한 정량적 분석)

  • Lee, D.H.;Lee, Y.S.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.6-9
    • /
    • 1996
  • In this paper, we attempted to analyze the contraction patterns of elbow flexor muscle during isometric, concentric and eccentric contraction. The analysis parameters are consisted of Sequency domain parameters (mean frequency, median frequency, skewness, kurtosis) and time domain parameters (zero crossing, positive maxima, integrated EMG). As a results, the analysis parameters have specific trends for muscles, muscle contraction patterns, muscle contraction angles. Especially, at the time domain analysis, IEMG is a dominant parameter for analysis of activation patterns, and the skewness, kurtosis are useful parameters for functional recognition.

  • PDF

Parameter Analysis of Muscle Models for Arm Movement (팔 근육운동의 파라미터 분석)

  • Kim, Lae-Kyeom;Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.155-161
    • /
    • 2008
  • Muscle force prediction in forward dynamic analysis of human motion depends many muscle parameters associated with muscle actuation. This research studies the effects of various parameters of Hill type muscle model using the simple hand raising motion. Motion analysis is carried out using motion capture system, and each muscle force is recorded for comparison with muscle model generated muscle force. Using Hill type muscle model, muscle force for generating the same hand rasing motion was setup adjusting 5 activation parameters. The test showed the importance of activation parameters on the accurate generation of muscle force.

  • PDF

An Experimental Study on Measurement of Chemical Kinetic Parameters of a Liquid Fuel with Various Components (혼합 액체 연료의 화학반응 인자 계측에 관한 실험적 연구)

  • Choi, Hyo-Hyun;Lim, Jun-Seok;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.21-26
    • /
    • 2011
  • Thermal analyses are conducted to measure chemical kinetic parameters of an unknown liquid fuel with various components. Thermal Analyses are divided into two different methods such as TGA(Thermo-Gravimetric Analysis) and DSC(Differential Scanning Calorimety). Non-isothermal experimental results are analyzed by adopting TGA and they are filtered by Freeman-Carroll method. As a results of the analysis, chemical parameters of the activation temperature and the reaction order are measured to be 6128.2 K and 1.4, respectively. Furthermore, the chemical kinetic parameters are obtained by a variety of mathematical processing methods. It has been found that they show a little difference depending on the processing method.

Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3218-3222
    • /
    • 2013
  • The aminolyses, anilinolysis and pyridinolysis, of bis(2-oxo-3-oxazolidinyl) phosphinic chloride (1) have been kinetically investigated in acetonitrile at 55.0 and $35.0^{\circ}C$, respectively. For the reactions of 1 with substituted anilines and deuterated anilines, a concerted SN2 mechanism is proposed based on the selectivity parameters and activation parameters. The deuterium kinetic isotope effects ($k_H/k_D$) invariably increase from secondary inverse to primary normal as the aniline becomes more basic, rationalized by the transition state variation from a backside to a frontside attack. For the pyridinolysis of 1, the authors propose a stepwise mechanism with a rate-limiting step change from bond breaking for more basic pyridines to bond formation for less basic pyridines based on the selectivity parameters and activation parameters. Biphasic concave upward free energy relationship with X is ascribed to a change in the attacking direction of the nucleophile from a frontside attack with more basic pyridines to a backside attack with less basic pyridines.

Effect of Steam Activation Parameters on Characteristics of Pine Based Activated Carbon

  • Manocha, S.M.;Patel, Hemang;Manocha, L.M.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.201-205
    • /
    • 2010
  • Activated carbons are well known as adsorbents for gases and vapors. Micro porous carbons are used for the sorption/separation of light gases, whereas, carbon with bigger pore size are applied for removal of large molecules. Therefore, the control of pore size of activated carbon plays a vital role for their use in specific applications. In the present work, steam activation parameters have been varied to control pore size of the resulting activated carbon. It was found that flow rate of steam has profound effect on both surface characteristic and surface morphology. The flow rate of steam was optimized to retain monolith structure as well as higher surface area.

Muscle Model including Muscle Fatigue Dynamics of Stimulated Skeletal Muscle (전기자극에 의한 골격근의 근육피로를 고려한 근육모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1476-1478
    • /
    • 1999
  • A musculotendon model is proposed to predict muscle force during muscle fatigue due to the continuous functional electrical stimulation(FES). Muscle fatigue dynamics can be modeled as the electrical admittance of muscle fibers and included in activation dynamics based on the{{{{ { Ca}^{2+ } }}}} kinetics. The admittance depends on the fatigue variable that monotonically increase or decrease if electrical pulse exists or not, and on the stimulation parameters and the number of applied pulses. In the response of the change in activation the normalized Hill-type contraction dynamics connected with activation dynamics decline the muscle shortening velocity and thus its force under muscle fatigue. The computer simulation shows that the proposed model can express the muscle fatigue and its recovery without changing any stimulation parameters.

  • PDF

Effect of Several Solvents on Low Temperature Wool Dyeing (몇 가지 용매가 양모의 저온염색에 미치는 영향)

  • Dho, Seong-Kook
    • Fashion & Textile Research Journal
    • /
    • v.11 no.4
    • /
    • pp.672-677
    • /
    • 2009
  • To reduce the dependence of wool dyeing on the temperature several solvents with different properties and structures were added to the dye bath of C. I. Acid Yellow 42. Nearly the same total solubility parameters(${\delta}_t$) of solvents as those of wool fiber and hydrophobic part of the dyestuff were needed to increase disaggregation of dye molecules, loosening the wool fiber and wickabilty of dyeing solution; besides, the large surface tension(${\gamma}$) value of the solvents and the well balanced values of the three-component Hansen solubility parameters such as dispersion(${\delta}_d$), polar(${\delta}_p$), and hydrogen(${\delta}_h$) bonding parameters were required. Among the added solvents dimethyl phthalate(DMP) and acetophenone(AP) were satisfied with these conditions and worked the most successfully in the low temperature wool dyeing. Their effectiveness proven by the dyeing rate and the activation energy ($E_a$) of the dyeing was in the order of DMP > AP > DBE > CH > M >NONE. In conclusion the total solubility parameters(${\delta}_t$), the three-component Hansen parameters and the surface tension(${\gamma}$) of DMP and AP could be the guidelines to select suitable solvents for low temperature wool dyeing.

Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate

  • Choi, Hojune;Yang, Kiyull;Koh, Han Joong;Koo, In Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2465-2470
    • /
    • 2014
  • The rate constants of solvolysis of phenyl N-phenyl phosphoramidochloridate (PhNHPO(Cl)OPh, Target Compound-TC1) have been determined by a conductivity method. The solvolysis rate constants of TC1 are well correlated with the extended Grunwald-Winstein equation, using the $N_T$ solvent nucleophilicity scale and YCl solvent ionizing scale, and sensitivity values of $0.85{\pm}0.14$ and $0.53{\pm}0.04$ for l and m, respectively. These l and m values were similar to those obtained previously for the complex chemical substances dimethyl thiophosphorochloridate; N,N,N',N'-tetramethyldiamidophosphorochloridate; 2-phenyl-2-ketoethyl tosylate; diphenyl thiophosphinyl chloride; and 9-fluorenyl chloroformate. As with the five previously studied solvolyses, an $S_N2$ pathway is proposed for the solvolyses of TC1. For four representative solvents, the rate constants were measured at several temperatures, and activation parameters (${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$) were estimated. These activation parameters are also in line with the values expected for an $S_N2$ reaction.