• 제목/요약/키워드: Activating protein-1

검색결과 318건 처리시간 0.028초

A New Function of Skp1 in the Mitotic Exit of Budding Yeast Saccharomyces cerevisiae

  • Kim, Na-Mil;Yoon, Ha-Young;Lee, Eun-Hwa;Song, Ki-Won
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.641-648
    • /
    • 2006
  • We previously reported that Skp1, a component of the Skp1-Cullin-F-box protein (SCF) complex essential for the timely degradation of cell cycle proteins by ubiquitination, physically interacts with Bfa1, which is a key negative regulator of the mitotic exit network (MEN) in response to diverse checkpoint-activating stresses in budding yeast. In this study, we initially investigated whether the interaction of Skp1 and Bfa1 is involved in the regulation of the Bfa1 protein level during the cell cycle, especially by mediating its degradation. However, the profile of the Bfa1 protein did not change during the cell cycle in skp1-11, which is a SKP1 mutant allele in which the function of Skp1 as a part of SCF is completely impaired, thus indicating that Skp1 does not affect the degradation of Bfa1. On the other hand, we found that the skp1-12 mutant allele, previously reported to block G2-M transition, showed defects in mitotic exit and cytokinesis. The skp1-12 mutant allele also revealed a specific genetic interaction with ${\Delta}bfa1$. Bfa1 interacted with Skp1 via its 184 C-terminal residues (Bfa1-D8) that are responsible for its function in mitotic exit. In addition, the interaction between Bfa1 and the Skp1-12 mutant protein was stronger than that of Bfa1 and the wild type Skp1. We suggest a novel function of Skp1 in mitotic exit and cytokinesis, independent of its function as a part of the SCF complex. The interaction of Skp1 and Bfa1 may contribute to the function of Skp1 in the mitotic exit.

Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

  • Wang, Yi-Xin;Cai, Hong;Jiang, Gang;Zhou, Tian-Bao;Wu, Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6791-6798
    • /
    • 2014
  • Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.

Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells

  • Jung, Euitaek;Koh, Dongsoo;Lim, Yoongho;Shin, Soon Young;Lee, Young Han
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.88-93
    • /
    • 2020
  • Cisplatin is a widely used anti-cancer agent. However, the effectiveness of cisplatin has been limited by the commonly developed drug resistance. This study aimed to investigate the potential effects of endoplasmic reticulum (ER) stress to overcome drug resistance using the cisplatin-resistant A2780/CisR ovarian cancer cell model. The synthetic chalcone derivative (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (named DPP23) is an ER stress inducer. We found that DPP23 triggered apoptosis in both parental cisplatin-sensitive A2780 and cisplatin-resistant A2780/CisR ovarian cancer cells due to activation of reactive oxygen species (ROS)-mediated unfolded protein response (UPR) pathway in the endoplasmic reticulum. This result suggests that ROS-mediated UPR activation is potential in overcoming drug resistance. DPP23 can be used as a target pharmacophore for the development of novel chemotherapeutic agents capable of overcoming drug resistance in cancer cells, particularly ovarian cancer cells.

Src Protein Tyrosine Kinases in Stress Responses

  • Grishin, Anatoly;Corey, Seth J.
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 2002
  • A role of Src family protein Tyrosine kinases (SFK) as mediators of receptor-ligand initiated responses is well established. Well documented, but less well understood is the role of SFK in cellular reaction to stresses. Evidence from the wide variety of experimental systems indicates that SFK mediate responses to all major classes of stress, including oxidation, DNA damage, mechanical impacts, and protein denaturing. SFK may be activated by stresses directly or via regulatory circuits whose identity is not yet fully understood. Depending on the cell type and the nature of activating stimulus, SFK may activate known downstream signaling cascades leading to cell survival, proliferation, cytoskeletal rearrangement, and apoptosis; the identity of these cascades is discussed. As in the case of receptor-initiated signaling, roles of individual SFK in various stress response may be redundant or non-redundant. Although signals generated by different stresses are generally transduced via distinct SFK pathways, these pathways may overlap or exhibit crosstalk. In some cell types stress-induced activation of SFK promotes survival and inhibits apoptosis, whereas the opposite may be true for other cell types. Stress responses constitute a new and rapidly developing area of SFK-mediated signaling.

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

Effect of Ginseng Saponin on the $Na^{+}$, $K^{+}$-ATPase of Dog Cardiac Sarcolemma

  • Lee, Shin-Woong;Lee, Jeung-Soo;Kim, Young-Hie;Jin, Kap-Duck
    • Archives of Pharmacal Research
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 1986
  • The effects of ginseng saponins on the sarcolemmal $Na^{+}$, $K^{+}$-ATPase were compared to gypsophila saponin, sodium dodecylsulfate (SDS), and Triton X-100 to elucidate whether the effects are due to the membrane distruption, using a highly enriched preparation of cardiac sarcolemma prepared from dog ventricular myocardium. About 26% and 29% of vesicles in the preparation, enriched in ouabain-sensitive $Na^{+}$, $K^{+}$-ATP ase, $\beta$-adrenergic and muscarinic receptors are rightside-out and inside-out orientation, respectively. Ginseng saponins (triol>total> diol) inhibited $Na^{+}$, $K^{+}$-ATP ase activity, $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H]ouabain binding of sarcolemmal vesicles. However, gypsophila saponin, SDS (0.4$\mu$g/$\mu$g protein) and Triton X-100 (0.6 $\mu$g/$\mu$g protein) caused about 1.35 and 1.40-fold increase in $Na^{+}$, $K^{+}$-ATPase activity and [$^{3}$H] oubain binding, respectively. Especially, the activating effect of gypsophila saponin on membrane Na+, K+ ATPase was detected at gypsophila saponin to sarcolemmal protein ratios as high as 100. Low dose of ginseng saponin (3$\mu$g/$\mu$g protein) decreased the phosphorylation sites and the concentration of ouabain binding sites (Bmax) without affecting the turnover number and affinity for ouabain binding, while gypsophila saponin, SDS(0.4 ug/ug protein), ahd Triton X-100 (0.6$\mu$g/$\mu$g protein) increased the Bmax. The results suggest that ginseng saponins cause a decrease in the number of active sites by interacting directly with $Na^{+}$, $K^{+}$-ATPase before disruption of membrane barriers of sarcolemmal vesicles.

  • PDF

ER stress and unfolded protein response (UPR) signaling modulate GLP-1 receptor signaling in the pancreatic islets

  • Yurong Gao;Hanguk Ryu;Hyejin Lee;Young-Joon Kim;Ji-Hye Lee;Jaemin Lee
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100004.1-100004.11
    • /
    • 2024
  • Insulin is essential for maintaining normoglycemia and is predominantly secreted in response to glucose stimulation by β-cells. Incretin hormones, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide, also stimulate insulin secretion. However, as obesity and type 2 diabetes worsen, glucose-dependent insulinotropic polypeptide loses its insulinotropic efficacy, whereas GLP-1 receptor (GLP-1R) agonists continue to be effective owing to its signaling switch from Gs to Gq. Herein, we demonstrated that endoplasmic reticulum (ER) stress induced a transition from Gs to Gq in GLP-1R signaling in mouse islets. Intriguingly, chemical chaperones known to alleviate ER stress, such as 4-PBA and TUDCA, enforced GLP-1R's Gq utilization rather than reversing GLP-1R's signaling switch induced by ER stress or obese and diabetic conditions. In addition, the activation of X-box binding protein 1 (XBP1) or activating transcription factor 6 (ATF6), 2 key ER stress-associated signaling (unfolded protein response) factors, promoted Gs utilization in GLP-1R signaling, whereas Gq employment by ER stress was unaffected by XBP1 or ATF6 activation. Our study revealed that ER stress and its associated signaling events alter GLP-1R's signaling, which can be used in type 2 diabetes treatment.

흰쥐의 임신초기에 있어서 자궁 조직중 Cyclic Nucleotide의 변화 및 Platelet-Activating Factor의 영향에 관한 연구 (Effect of Platelet-Activating Factor on Cyclic Nucleotide Level in Rat Uterine tissue during Preimplantation Period)

  • 박경식;권종국
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제18권2호
    • /
    • pp.133-142
    • /
    • 1991
  • 본 연구의 목적은 임신 초기 자궁 조직중의 cyclic nucleotide 의 변화 및 PAF 가 이들에 미치는 영향을 관찰함으로써 PAF 가 흰쥐의 초기 임신에 어떻게 관련하는지를 조사하기 위함이다. 시험구로써 임신 각 일에 $1{\mu}g$ 의 PAF 혹은 이것의 수용체 길항제인 1.25mg의 BN-52021이 근육내 조사되었고 비 임신구 및 대조구에 대하여는 PBS만이 주사되었다. 자궁 조직중의 cAMP 및 cGMP 농도는 분석용 test kit를 사용하여 분석되었다. 비 임신구 경우 자궁 조직중 cAMP 농도는 단백질 mg 당 $2.91{\pm}0.33$ pmol로서 임신 보다도 낮았고 cGMP 농도 또한 $0.39{\pm}0.20$ pmol로서 임신구보다 낮은 경향이 었다. 자궁 조직중 cAMP 의 최고농도는 임신 3일째 ($5.92{\pm}1.72$ pmol/mg protein) 였고 cGMP 경우는 임신 4일째($1.03{\pm}0.22$ pmol/mg protein) 이었다. 임신 각일에 PAF 는 PAF 처리하지 아니한 대조구에 비하여 증가된 cAMP 를 보여주었으나(임신 0, 2, 그리고 4 일째 경우 p<0.05) BN-52021은 감소된 경향을 나타내었다. cGMP에 대하여는 PAF나 BN-52021 공히 일정한 효과적 경향을 보이지 아니하였다. 따라서, 임신은 자궁 조직중 cyclic nucleotide에 영향을 미칠 수 있으며 흰쥐의 착상기동안 PAF는 cGMP에 대하여 보다는 cAMP에 영향을 미침으로써 착상에 관련된 일련의 반응에 영향을 미칠 것으로 사료된다.

  • PDF

Identification of p54nrb and the 14-3-3 Protein HS1 as TNF-α-Inducible Genes Related to Cell Cycle Control and Apoptosis in Human Arterial Endothelial Cells

  • Stier, Sebastian;Totzke, Gudrun;Grunewald, Elisabeth;Neuhaus, Thomas;Fronhoffs, Stefan;Schoneborn, Silke;Vetter, Hans;Ko, Yon
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.447-456
    • /
    • 2005
  • TNF-$\alpha$ plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-$\alpha$ induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-$\alpha$ on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-$\alpha$ cytotoxicity, presumably by NF-${\kappa}B$ mediated induction of protective genes. However, the cytoprotective genes involved in NF-${\kappa}B$ dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-$\alpha$ inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-$\alpha$-induced expression of the RNA binding protein $p54^{nrb}$ and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-$\alpha$ mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, $p21^{cip1}$ and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-$\alpha$ induced gene expression patterns mediating the prosurvival effect of TNF-$\alpha$ in endothelial cells.

꾸지뽕나무 추출물의 비만세포 억제에 의한 항알레르기 효과 및 기전 (Cudrania tricuspidata Suppresses Mast Cell-Mediated Allergic Response In Vitro and In Vivo)

  • 김영미
    • 약학회지
    • /
    • 제56권1호
    • /
    • pp.26-34
    • /
    • 2012
  • Mast cells play an important role in early and late phase allergic reactions through allergen and IgE-dependent release of histamine, proteases, prostaglandins, and several multifunctional cytokines. In this study, we investigated whether Cudrania tricuspidata extract (CTE) suppresses IgE-mediated allergic responses in mast cells, an allergic animal model, and its mechanism of action in mast cells. We found that CTE inhibited IgE-mediated degranulation and cytokine production in rat basophilic leukemia (RBL)-2H3 mast cells and bone marrow-derived mast cells (BMMC), as well as passive cutaneous anaphylaxis (PCA) in mice. With regard to its mechanism of action, CTE suppressed the activating phosphorylation of spleen tyrosine kinase (Syk), a key enzyme in mast cell signaling processes and that of LAT, a downstream adaptor molecule of Syk in $Fc{\varepsilon}RI$-mediated signal pathways. CTE also suppressed the activating phosphorylation of mitogen-activated protein (MAP) kinases and Akt. The present results strongly suggest that the anti-allergic activity of CTE is mediated through inhibiting degranulation and allergic cytokine secretion by inhibition of Syk kinase in mast cells. Therefore, CTE may be useful for the treatment of allergic diseases.