• Title/Summary/Keyword: Activating protein-1

Search Result 318, Processing Time 0.037 seconds

Overexpression of GAP Causes the Delay of NGF-induced Neuronal Differentiation and the Inhibition of Tyrosine Phosphorylation of SNT in PC12 Cells

  • Yang, Sung-Il;Kaplan, David
    • BMB Reports
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 1995
  • The GTPase activating protein (GAP) can function both as a negative regulator and an effector of $p21^{ras}$. Overexpression of GAP in NIH-3T3 cells has been shown to inhibit transformation by ms or src. To investigate the function of GAP in a differentiative system, we overexpressed this protein in the nerve growth factor (NGF)-responsive PC12 cell line. Two-fold overexpression of GAP caused a delay of several days in the onset of NGF- but not FGF-induced neuronal differentiation of PC12 cells. However, the NGF-induced activation or tyrosine phosphorylation of upstream (Trk, PLC-${\gamma}1$, SHC) and downstream (B-Raf and $p44^{mapk/erk1}$) components of $p21^{ras}$, signalling cascade was not altered by GAP overexpression. Therefore, the change of phenotype induced by GAP was probably not due to GAP functioning as a negative regulator of $p21^{ras}$. Rather, we found that NGF-induced tyrosine phosphorylation of SNT, a specific target of neurotrophin-induced tyrosine kinase activity, was inhibited by GAP overexpression. SNT is thought to function upstream or independent of $p21^{ras}$. Thus in PC12 cells, overexpressed GAP may control the rate of neuronal differentiation through a pathway involving SNT rather than the $p21^{ras}$ signalling pathway.

  • PDF

Gene Expression of Surfactant Protein A, Band C in Platelet-activating Factor(PAF) Treated Rats (Platelet-activating Factor 기도내 투여 후 Surfactant Protein A, B 및 C의 유전자 발현에 관한 연구)

  • Sohn, Jang-Won;Shin, Dong-Ho;Park, Sung-Soo;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.369-379
    • /
    • 1998
  • Background: Platelet-activating factor(PAF) might play an important role in the development of acute respiratory distress syndrome. Since PAF induced lung injury is similar to changes of acute respiratory distress gyndrome, and abnormalities in surfactant function have been described in acute respiratory distress syndrome, the authors investigated the effects of PAF on the regulation of surfactant protein A, B and C mRNA accumulation Method: The effects of PAF on gene expression of surfactant protein A, B and C in 24 hours after intratracheal injection of PAF in rats. Surfactant protein A, B and C mRNAs were measured by filter hybridization. Results: The accumulation of SP-A mRNA in PAF treated group was significantly decreased by 37.1 % and 41.6%, respectively compared to the control group and the group treated with Lyso-PAF(p<0.025, p<0.01). The accumulation of SP-B mRNA in PAF treated group was decreased by 18.7% and 32.2 %, respectively compared to the control group and the group treated with Lyso-PAF but statistically not significant. The accumulation of SP-C mRNA in PAF treated group was significantly decreased by 30.7% and 38.5%, respectively compared to the control group and the group treated with Lyso-PAF(p<0.l, p<0.01). Conclusion: These findings represent a marked inhibitory effects of platelet-activating factor on surfactant proteins expression in vivo. This supports, in turn, 'platelet-activating factor might be related to pathogenesis of acute respiratory distress syndrome.

  • PDF

IQGAP1, a signaling scaffold protein, as a molecular target of a small molecule inhibitor to interfere with T cell receptor-mediated integrin activation

  • Li, Lin-Ying;Nguyen, Thi Minh Nguyet;Woo, Eui Jeon;Park, Jongtae;Hwang, Inkyu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.361-373
    • /
    • 2020
  • Integrins such as lymphocyte function-associated antigen -1 (LFA-1) have an essential role in T cell immunity. Integrin activation, namely, the transition from the inactive conformation to the active one, takes place when an intracellular signal is generated by specific receptors such as T cell receptors (TCRs) and chemokine receptors in T cells. In an effort to explore the molecular mechanisms underlying the TCR-mediated LFA-1 activation, we had previously established a high-throughput cell-based assay and screened a chemical library deposited in the National Institute of Health in the United States. As a result, several hits had been isolated including HIKS-1 (Benzo[b]thiophene-3-carboxylic acid, 2-[3-[(2-carboxyphenyl) thio]-2,5-dioxo-1-pyrrolinyl]-4,5,6,7-tetrahydro-,3-ethyl ester). In an attempt to reveal the mode of action of HIKS-1, in this study, we did drug affinity responsive target stability (DARTS) assay finding that HIKS-1 interacted with the IQ motif containing GTPase activating protein 1 (IQGAP1), a 189 kDa multidomain scaffold protein critically involved in various signaling mechanisms. Furthermore, the cellular thermal shift assay (CETSA) provided compelling evidence that HIKS-1 also interacted with IQGAP1 in vivo. Taken together, it can be concluded that HIKS-1 interferes with the TCR-mediated LFA-1 activation by interacting with IQGAP1 and thereby disrupting the signaling pathway for LFA-1 activation.

Carnosol induces the osteogenic differentiation of bone marrow-derived mesenchymal stem cells via activating BMP-signaling pathway

  • Abdallah, Basem M.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.3
    • /
    • pp.197-206
    • /
    • 2021
  • Carnosol is a phenolic diterpene phytochemical found in rosemary and sage with reported anti-microbial, anti-oxidant, anti-inflammatory, and anti-carcinogenic activities. This study aimed to investigate the effect of carnosol on the lineage commitment of mouse bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblasts and adipocytes. Interestingly, carnosol stimulated the early commitment of mBMSCs into osteoblasts in dose-dependent manner as demonstrated by increased levels of alkaline phosphatase activity and Alizarin red staining for matrix mineralization. On the other hand, carnosol significantly suppressed adipogenesis of mBMSCs and downregulated both early and late markers of adipogenesis. Carnosol showed to induce osteogenesis in a mechanism mediated by activating BMP signaling pathway and subsequently upregulating the expression of BMPs downstream osteogenic target genes. In this context, treatment of mBMSCs with LDN-193189, BMPR1 selective inhibitor showed to abolish the stimulatory effect of carnosol on BMP2-induced osteogenesis. In conclusion, our data identified carnosol as a novel osteoanabolic phytochemical that can promote the differentiation of mBMSCs into osteoblasts versus adipocytes by activating BMP-signaling.

Kinesin Superfamily Protein 5A (KIF5A) Binds to ArfGAP1, ADP-ribosylation Factor GTPase-activating Protein 1 (Kinesin Superfamily Protein 5A (KIF5A)와 ADP-ribosylation Factor GTPase-activating Protein 1 (ArfGAP1)의 결합)

  • Myoung Hun Kim;Se Young Pyo;Eun Joo Chung;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.333-338
    • /
    • 2024
  • Kinesin-1 is a heterotetrameric protein composed of two heavy chains (KHCs, also known as KIF5s) with a motor domain and two light chains (KLCs) without a motor domain. KIF5 has three subtypes, namely, KIF5A, KIF5B, and KIF5C, which share high amino acid homology except in their carboxy (C)-terminal region. KIF5A is responsible for transporting cargo within the cell. The adaptor proteins that bind to the C-terminal region of KIF5A mediate between kinesin-1 and cargo. However, the proteins regulating the intracellular cargo transport of kinesin-1 have not yet been fully identified. In this study, we identified ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1), which is involved in the intracellular trafficking of lysosomes, as a binding partner of KIF5A. KIF5A binds to the C-terminal region of ArfGAP1, and ArfGAP1 binds to the C-terminal region of KIF5A but does not interact with KIF5B, KIF5C, kinesin light chain 1 (KLC1), or KIF3A. When co-expressed in mammalian cells, ArfGAP1 co-localized with KIF5A and co-immunoprecipitated with KIF5A, KIF5B, and KLC1, but not with KIF3B. These results suggest that kinesin-1 may be regulated by ArfGAP1 in the intracellular transport of cargo.

SIRT1 Suppresses Activating Transcription Factor 4 (ATF4) Expression in Response to Proteasome Inhibition

  • Woo, Seon Rang;Park, Jeong-Eun;Kim, Yang Hyun;Ju, Yeun-Jin;Shin, Hyun-Jin;Joo, Hyun-Yoo;Park, Eun-Ran;Hong, Sung Hee;Park, Gil Hong;Lee, Kee-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1785-1790
    • /
    • 2013
  • The synthetic machinery of ATF4 (activating transcription factor 4) is activated in response to various stress conditions involved in nutrient restriction, endoplasmic reticulum homeostasis, and oxidation. Stress-induced inhibition of proteasome activity triggers the unfolded protein response and endoplasmic reticulum stress, where ATF4 is crucial for consequent biological events. In the current study, we showed that the $NAD^+$-dependent deacetylase, SIRT1, suppresses ATF4 synthesis during proteasome inhibition. SIRT1 depletion via transfection of specific siRNA into HeLa cells resulted in a significant increase in ATF4 protein, which was observed specifically in the presence of the proteasome inhibitor MG132. Consistent with SIRT1 depletion data, transient transfection of cells with SIRT1-overexpressing plasmid induced a decrease in the ATF4 protein level in the presence of MG132. Interestingly, however, ATF4 mRNA was not affected by SIRT1, even in the presence of MG132, indicating that SIRT1-induced suppression of ATF4 synthesis occurs under post-transcriptional control. Accordingly, we propose that SIRT1 serves as a negative regulator of ATF4 protein synthesis at the post-transcriptional level, which is observed during stress conditions, such as proteasome inhibition.

Glutamic Acid Rich Helix II Domain of the HIV-1 Vpu has Transactivation Potential in Yeast

  • Hong, Seung-Keun;Bae, Yong-Soo;Kim, Jung-Woo
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.405-408
    • /
    • 1999
  • The transactivation potential of HIV-1 Vpu was identified from the yeast two-hybrid screening process. The helix II domain of HIV-1 Vpu protein and mutant Vpu protein lacking the transmembrane domain exhibited transactivation of the LacZ and Leu2 reporter genes carrying LexA upstream activating sequences, but full-length HIV-1 Vpu and the helix I domain of HIV-1 Vpu did not. The helix II domain of HIV-1 Vpu consists of a number of acidic amino acids, and is especially rich in glutamic acid, a characteristic of many transcription factors. This result suggests that protein-protein interaction may occur through the acidic helix II domain of HIV-1 Vpu.

  • PDF

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A (Ras-GTPase-activating protein SH3 domain-binding proteins 2, G3BP2와 KIF5A C-말단 꼬리 영역과의 결합)

  • Jeong, Young Joo;Jang, Won Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1191-1198
    • /
    • 2017
  • Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.

RAS inhibitor를 이용한 항암제의 개발에 관하여

  • 어미숙
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.32-35
    • /
    • 1993
  • ras는 활성화 형태인 GTP bound form과 비활성화 형태인 GDP bound form의 두 형태로 존재하며 두 형태를 매개하는 regulatory protein들에 의해 그 activity가 조절된다. 또한 ras는 GTP와 GDP에 강한 친화성이 있으며 세포내에는 GTP보다 GDP가 더 많이 있어서 평소에는 ras가 GDP와 결합하고 있다가 활성화될때만 GTP와 결합하는 것으로 추정된다. GDP bound ras는 guanine nucloetide exchange protein(GEP)에 의해 활성화된 GTP bound form으로 전환되며 ras의 기능이 발휘된 후에는 GTPase activating protein(GAP)에 의해 비활성화된다. Yeast의 경우 IRA1과 2의 product가 GAP의 역할을 하는 것으로 알려져 있고 CDC25 gene의 product가 GEP의 기능을 담당하는 것으로 알려져 있다. NF1 gene은 Von Recklinghausen Neurofibromatosis Type I 질병을 가진 환자에게서 발견되었는데 부분적으로 sequencing한 결과에 따르면 yeast의 IRA1/2, mammalian GAP gene product와 protein homology가 높은 것으로 나타났다. Yeast의 경우 IRA1/2 gene의 손실이나 mammalian ras gene의 transformation으로 인한 heat shock sensitivity가 NF1 gene(2,3) 혹은 GAP(4)의 expression으로 suppression된 것으로 보아 NF1이 GAP protein으로서 ras를 불활성화 시킨다는 것이 판명되었다. 결론적으로 ras의 활성은 GTP bound 혹은 GDP bound의 양쪽형태를 이동하면서 조절되는데 이 기능은 GAP과 GEP 또는 그의 유사 protein들에 의해 수행되며 이러한 regulatory protein들은 growth factor, cytokine 그리고 protein kinase 같은 signal에 의해 활성화된다고 생각된다. 본 총설에서는 ras protein의 여러가지 성질보다는 ras의 modification과 관련하여 항암제로 사용할 수 있는 ras에 specific한 약품개발의 가능성과 현재 알려진 ras의 inhibitor를 중심으로 논하고자 한다.

  • PDF