• Title/Summary/Keyword: Activated-carbon treatment

Search Result 659, Processing Time 0.026 seconds

Analysis of physical properties of activated carbon for water purification made by using coal and commercial activated carbon (석탄을 이용하여 제조한 상수처리용 활성탄과 상업용 활성탄의 물성특성 분석)

  • 최동훈;김종수;안철우;이철승;박진식
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, the physical properties of coal-based(bituminous, anthracite·bituminous) activated carbon were compared with those of four different commercial activated carbon used for water treatment. In case of bituminous coal and blend coal, the results of SEM analysis indicated that more pore was extended and shaped in activation process than carbonization process. The results of BET analysis indicated that specific surface area of P Co. activated carbon was larger than the others, and C Co. activated carbon, S Co. activated carbon and anthracite + bituminous was similar. Therefore, adsorption capacities and breakthrough time of anthracite + bituminous regarded similar to C Co. activated carbon.

Removal of boron in seawater by activated carbon adsoprtion (활성탄 흡착에 의한 해수중의 보론 제거)

  • Kim, Han-Seung;Kang, Joon-Seok;Kim, Byung-Ro
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.917-922
    • /
    • 2011
  • Adsorption characteristics of boron on activated carbon was investigated in order to evaluate the use of activated carbon for the removal of boron in desalination processes using SWRO. Boron was removed ranging from 54~60% when the concentration of activated carbon was 1,000 mg/L in 6 hours under the initial boron concentration of 5 mg/L. The removal of boron increased by 20~22% with the increase of pH from 5 to 9. Organic matter had adverse effect on the adsorption of boron on activated carbon. Boron removal decreased by 10-12% when EDTA was added at 1 mg/L under 5 mg/L of boron and 200mg/L of activated carbon. In this results, activated carbon would be a good candidate for a pretreatment of desalination processes by SWRO from the view of mitigating the feed boron concentration to RO and meeting the effluent boron concentration without post-treatment after RO.

Triacetin이 탄소복합 필터의 연기성분 흡착능에 미치는 영향

  • 김정열;신창호;김종열
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.205-209
    • /
    • 1998
  • This study was conducted to evaluate the effect of triacetin(TA) treatment during manufacturing carbon dual filter for the adsorption of cigarette smoke components by activated carbons. The measurements were carried out by separation of activated carbon from carbon dual filter, and the specific surface area analyzed. The specific surface area of activated carbon from the domestic cigarette filter and from the foreign cigarette filter by degassing at 9$0^{\circ}C$ was 163$\pm$32$m^2$/g, and 16.6$\pm$1.9$m^2$/g, respectively. Those values were very lower than that of degassing at 35$0^{\circ}C$ (Domestic brand: 952$\pm$30$m^2$/g, and Foreign brand: 847$\pm$73$m^2$/g). By comparing the adsorption capacity of acetone and benzene with and without triacetin treated activated carbon, there was a 20% reduction of adsorption capacity by 5% triacetin treatment. Also, from the cilia toxicity test with carbon dual filter treated 0 % TA and 8 % TA, the cilia survival time was 706$\pm$74sec. and 603$\pm$64sec. for 0% TA and 8% TA, respectively. The delivery rate of vapour phase of cigarette smoke, which consists of main components of cilia toxicity, was higher at 8% TA filter than 0 % TA filter. Our results indicate that the treated TA covered the micro-pore of activated carbon, and then reduced specific surface area, finally, decreased the adsorption of vapour phase from cigarette smoke.

  • PDF

Substrate Removal Characteristics for Low Temperature by Biological Activated Carbon (저온에서 생물활성탄의 기질제거특성)

  • Ryu, Seong Ho;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.76-93
    • /
    • 1997
  • Activated carbon is widely used for the treatment of water, wastewater and other liquid wastes. Biological activated carbon (BAC) process is water and wastewater treatment process developed in the 1970's. In addition to activated carbon adsorption, biodegradation organic pollutants occurs in the BAC bed where a large amount of aerobic biomass grows. This results in a long operation time of the carbon before having to be regenerated and thus a low treatment cost. Although the BAC process has been widely used, its mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption, whether these two reactions can promote each other or whether they just simultaneously exist in the BAC bed. Also, the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. And that, because biological process is influenced by low temperature, the mechanism of the BAC process is also effected by temperature variation in our country of winter temperature near the freezing point. Therefore, the objective of this study examines closely the mechanism of the BAC process by temperature variation using phenol as substrate. From this study, biological activated carbon is good substrate removal better than non adsorbing materials (charcoal, sand) as temperature variation, especially low temperature(near $5^{\circ}C$).

  • PDF

Effects of Additions of Activated Carbon on Productivity and Physico-Chemical Characteristics in Broilers (활성탄의 첨가가 육계의 생산성 및 이화학적 특성에 미치는 영향)

  • 김영직;박창일
    • Food Science of Animal Resources
    • /
    • v.21 no.1
    • /
    • pp.24-31
    • /
    • 2001
  • The effects of addition of activated carbon to diet of broiler on productivity and meat quality of broilers were investigated. 48 broiler raised for six week. The addition level of activated carbon to each group was added 0, 0.6, 0.9 and 1.2%, respectively. During the experimental feeding period, weekly gain and feed intake of treatment fed diets contain 0.6 and 0.9 percent activated carbon were higher compared with those fed on control diet, though effects of diets containing graded levels of activated carbon on the feed efficiency were not found. When broilers were fed activated carbon on crude protein level of birds were higher compared with that of control diet. Also, crude fat of broilers fed diet containing activated carbon were shown to decrease compared with those fed of control diet(p<0.05). The pH from activated carbon diets was rather higher than that of control(p<0.05). The content of VBN and TBARS was not significantly different among all treatments. The heating loss has tend to decrease in activated carbon diet groups(p<0.05). The WHC tend to be increase in activated carbon diet groups(p<0.05). Blood cholesterol was no significantly different.

  • PDF

Comparison of Surface Characteristics and Adsorption Characteristics of Activated Carbons Changed by Acid and Base Modification (산과 염기의 개질에 의해 변화된 활성탄의 표면특성과 흡착특성 비교)

  • Lee, Song-Woo;Lee, Min-Gyu;Park, Sang-Bo
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.565-571
    • /
    • 2008
  • The surface properties of activated carbon modified by acids and base were studied. The influence of the surface chemistry on the adsorption of benzene and acetone vapor on modified activated carbons has been investigated The modified activated carbons were obtained by treatment with acetic acid ($CH_3COOH$), nitric acid ($HNO_3$) and sodium hydroxide (NaOH). The modified activated carbons had similar porosity but different surface chemistry and adsorption characteristics. The total surface acidity (sum of functional groups) of activated carbon (AC-AN) treated by nitric acid was 2.6 times larger than that of activated carbon (AC) before the acid treatment. Especially, carboxyl group was much developed by nitric acid treatment. The benzene equilibrium adsorption capacity of AC-AN decreased 20% more than that of AC. However, the acetone equilibrium adsorption capacity of AC-AN increased 20% more than that of AC because of the large increase of carboxyl group and acidity.

Retrospect on Refractories in Water Treatment (기존 정수처리방법으로 제거가 어려운 유기물에 대한 실험적 연구)

  • 우달식;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.17-23
    • /
    • 1995
  • As a basic experiment to develope biological pretreatment proces~ in water treatment, the experiments on biodegradability and isothermal adsorption of activated carbon were performed on refractories such as humic acid, $NH_3-N$, phenol and ABS which caused the problems in drinking water treatment. Also, the treatabilities on humic acid were examined in the continuous flow type reactors. The removal efficiencies of humic acid, $NH_3-N$, phenol and ABS in the biodegradable experiments for 5 days were 20.1%, 73.4%, 91.7% and 97.5%, respectively. In the isothermal adsorption test of refractories on activated carbon to be used as a media in the continuous flow type reactors, ABS and phenol are adsorbed easily, but humic acid and $NH_3-N$ are difficult to be done. The removal efficiencies of humic acid in granular activated carbon(GAC) reactor were about 7-8% higher than in biological activated carbon(BAC) reactor. The removal efficiencies of humic acid in biological fluidized bed(BFB) reactor were about 30% in GAC media, but were almost zero in sea sand media.

  • PDF

Adsoption Removal of PCBs by Activated Carbon (활성탄에 의한 PCBs의 흡착제거)

  • Yu, Yong-Ho;Lee, Jong-Jig
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.59-64
    • /
    • 2006
  • In this study, adsorption characteristics of PCBs on granular activated carbon were experimentally investigated in a batch reactor and in a fixed bed reactor. Granular activated carbon removed above 98.4% of initial concentration, 1000mg/L, of PCBs. It was estabilished that the adsorption equilibrium of PCBs on granular activated carbon was more successfully fitted by Freundlich isotherm equation in the concentration range from 1 to 1000mg/L. Because Freundlich parameter, ${\beta}$ is 0.346, removall treatment of PCBs by activated carbon accounts for the fact that toxicity reduction can be achieved through this process. Appearance time of breakthrough curve is faster with the increase flow rate and inflow concentration of liquid. The utility of granular activated carbon is enhanced with the increase of bed height and with the decrease of inflow rate.

Effect of Sta-Green and Activated Carbon on Growth of Agastache rugosa in Green House

  • Seo, Young-Nam;Choi, Seong-Kyu
    • Korean Journal of Plant Resources
    • /
    • v.20 no.3
    • /
    • pp.255-257
    • /
    • 2007
  • This study was conducted to investigate the effect of sta-green and activated carbon on leaf and stem growth of Agastache rugosa as it is affected by different amounts of sta-green and activated carbon. The results obtained are summarized as follows. Growth characteristics including plant height and leaf number were the highest when treated with 30% of sta-green. The weight of fresh leaf and stem of Agastaches rugosa was very low in control. Also, fresh weight of Angelica acutiloba was higher in 10% treatment of activated carbon. However, when the plants were grown in 10% activated carbon. all these promoters were the biggest. Sta-green and activated carbon can be utilized as a soil conditioner in agricultural crop areas.

The Humic Acid Treatment Characteristics by Ionized Gas and Combination with Activated Carbon (이온화가스와 활성탄을 이용한 휴믹산 처리에 관한 연구)

  • Chung, Paul-Gene;Lee, Eun-Ju;Kim, Min-Jeong;Cho, Sun-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.72-77
    • /
    • 2004
  • Laboratory studies were carried out to find out the characteristics of humic acid treatment by activated carbon and ionized gas, In order to increase oxidation power of ionized gas for treating organic matter, we used granular activated carbon. By using $UV_{254}$, easy analysis method, we calculated humic acid concentration and $SCOD_{cr}$ concentration. For an initial concentration of humic acid, 10, 50 and 100ppm, the reaction rate constant by $UV_{254}$ was $8.98{\times}10^{-3}$/min, $5.62{\times}10^{-3}$/min and $4.8{\times}10^{-3}$/min respectively due to the same flow rate of ionized gas. When we added activated carbon to the ionized gas for humic acid treatment, the reaction rate constant increased in 4.13, 3.65 and 3.15 times. So, by using activated carbon in treating humic acid by ionized gas, oxidation power of organic matter by ionized gas was increased. The hydrophobic fraction constitutes 98% of organic matter for humic acid at the beginning. After the treatment using ionized gas for humic acid, the hydrophobic fraction decreased by 63~65% and the hydrophilic one increased by 35~37%. So, it was proved that the treatment increased the hydrophilic fraction in organic matter.