• Title/Summary/Keyword: Activated oxygen

Search Result 712, Processing Time 0.029 seconds

Hepatoprotective effect of Ikwiseungyang-tang via Nrf2 activation (Nrf2 활성화를 통한 익위승양탕(益胃升陽湯)의 간세포 보호 효과)

  • Jin, Hyo Jeong;Park, Sang Mi;Kim, Eun Ok;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.167-179
    • /
    • 2021
  • Objectives : Oxidative stress is a important cause of liver disease, and regulation of oxidative stress is essential to maintain the normal metabolic function of the liver. Until a recent date, there has been no studies on the hepatoprotective effect of Ikwiseungyang-tang (IWSYT). Therefore, this study aims to demonstrate the hepatoprotective effect of IWSYT and its related molecular mechanisms on arachidonic acid (AA) + iron induced oxidative stress model in HepG2 cells. Methods : To determine the cytoprotective effect of IWSYT against AA + iron-induced oxidative stress, cell viability, apoptosis-related proteins, intracellular reactive oxygen species (ROS), GSH, and mitochondrial membrane potential (MMP) were measured. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation was analyzed by immunoblot analysis. In addition, Nrf2 transcription activation through ARE binding was measured by reporter gene assays, and the expression of the Nrf2 target antioxidant genes were confirmed by immunoblot analysis. Results : IWSYT increased cell viability from cell death induced by AA + Iron, and inhibited apoptosis by regulating apoptosis-related proteins. Furthermore, IWSYT protected cells by inhibiting intracellular ROS production, GSH depletion, and MMP degradation. Nrf2 activation was increased by IWSYT, and Nrf2 target genes were activated by IWSYT too. Conclusions : These results suggest that IWSYT can protect hepatocytes from oxidative stress through Nrf2 activation and can be potentially applied in the prevention and treatment of liver damage.

Protective effect of Cordyceps militaris against hydrogen peroxide-induced oxidative stress in vitro

  • He, Mei Tong;Lee, Ah Young;Park, Chan Hum;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.13 no.4
    • /
    • pp.279-285
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Excessive production of reactive oxygen species (ROS) such as hydroxyl (${\cdot}OH$), nitric oxide (NO), and hydrogen peroxide ($H_2O_2$) is reported to induce oxidative stress. ROS generated by oxidative stress can potentially damage glial cells in the nervous system. Cordyceps militaris (CM), a kind of natural herb widely found in East Asia. In this study, we investigated the free radical scavenging activity of the CM extract and its neuroprotective effects in $H_2O_2$-induced C6 glial cells. MATERIALS/METHODS: The ethanol extract of CM ($100-1,000{\mu}g/mL$) was used to measure DPPH, ${\cdot}OH$, and NO radical scavenging activities. In addition, hydrogen peroxide ($H_2O_2$)-induced C6 glial cells were treated with CM at $0.5-2.5{\mu}g/mL$ for measurement of cell viability, ROS production, and protein expression resulting from oxidative stress. RESULTS: The CM extract showed high scavenging activities against DPPH, ${\cdot}OH$, and NO radicals at concentration of $1,000{\mu}g/mL$. Treatment of CM with $H_2O_2$-induced oxidative stress in C6 glial cells significantly increased cell viability, and decreased ROS production. Cyclooxygenase-2 and inducible nitric oxide synthase protein expression was down-regulated in CM-treated groups. In addition, the protein expression level of phospho-p38 mitogen-activated protein kinase (p-p38 MAPK), phospho-c-Jun N-terminal kinase (p-JNK), and phospho-extracellular regulated protein kinases (p-ERK) in $H_2O_2$-induced C6 glial cells was down-regulated upon CM administration. CONCLUSION: CM exhibited radical scavenging activity and protective effect against $H_2O_2$ as indicated by the increased cell viability, decreased ROS production, down-regulation of inflammation-related proteins as well as p-p38, p-JNK, and p-ERK protein levels. Therefore, we suggest that CM could play the protective role from oxidative stress in glial cells.

Experience of a Disaster Medical Assistant Team activation in the fire disaster at Jecheon sports complex building: limitation and importance of rescue (제천 스포츠복합건물 화재 재난에서의 권역재난의료지원팀 활동 경험 고찰: 한계점과 구조의 중요성)

  • Jung, Seung Gyo;Kim, Yoon Seop;Kim, Oh Hyun;Lee, Kang Hyun;Kim, Kwan-Lae;Jung, Woo Jin
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.6
    • /
    • pp.585-594
    • /
    • 2018
  • Objective: This study was designed to report on the progress of the fire at Jecheon sports complex and to assess the adequacy of Disaster Medical Assistant Team (DMAT)'s activities in response to the fire disaster. Methods: We conducted a retrospective review based on camera recordings and medical records that were recorded at the disaster site for assessment of activities. We cooperated with firefighters, police officers, local hospital medical staffs and public health personnel in Jecheon in order to classify patients in the disaster field and to understand the patients' progress. Results: At 15:53, the first request for emergency rescue came to the 119 general emergency call center, and a request for DMAT activation came at 16:28. DMAT arrived at the site at 17:04 and remained active until the following day at 00:43. The total number of casualties was 60, including 27 minimal (Green) patients, 29 expectant (Black) patients, three delayed (Yellow) patients, and one immediate (Red) patient. There were 32 patients who received on-site care by DMAT. Two patients were transferred from a local hospital to Wonju Severance Christian Hospital for hyperbaric oxygen therapy. Conclusion: Twenty-nine victims were found in the sports complex building, and there were 31 mildly to moderately injured patients in this fire disaster. The main cause of death was thought to be smoke suffocation. Although DMAT was activated relatively quickly, it was not able to provide effective activity due to the late rescue and difficulty with fire suppression.

Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways

  • Kim, Dae Won;Shin, Min Jea;Choi, Yeon Joo;Kwon, Hyun Jung;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.654-659
    • /
    • 2018
  • Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB ($NF-{\kappa}B$) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Effects of Current Density and Electrolyte on COD Removal Efficiency in Dyeing Wastewater Treatment by using Electro-coagulation (전기 응집법을 이용한 염색 폐수의 처리에서 전류 밀도와 전해질의 COD 제거율에 대한 영향)

  • Jang, Seong-Ho;Kim, Go-Eun;Kang, Jeong-Hee;Ryu, Jae-Yong;Lee, Won-ki;Lee, Jae-Yong;Park, Jin-Sick
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.653-659
    • /
    • 2018
  • In the industrial wastewater that occupies a large proportion of river pollution, the wastewater generated in textile, leather, and plating industries is hardly decomposable. Though dyeing wastewater has generally been treated using chemical and biological methods, its characteristics cause treatment efficiencies such as chemical oxygen demand (COD) and suspended solids (SS) to be reduced only in the activated sludge method. Currently, advanced oxidation technology for the treatment of dyeing wastewater is being developed worldwide. Electro-coagulation is highly adapted to industrial wastewater treatment because it has a high removal efficiency and a short processing time regardless of the biodegradable nature of the contaminant. In this study, the effects of the current density and the electrolyte condition on the COD removal efficiency in dyeing wastewater treatment by using electro-coagulation were tested with an aluminum anode and a stainless steel cathode. The results are as follows: (1) When the current density was adjusted to $20A/m^2$, $40A/m^2$, and $60A/m^2$ under the condition without electrolyte, the COD removal efficiency at 60 min was 62.3%, 72.3%, and 81.0%, respectively. (2) The removal efficiency with NaCl addition was 7.9% higher on average than that with non-addition at all current densities. (3) The removal efficiency with $Na_2SO_4$ addition was 4.7% higher on average than that with non-addition at all current densities.

NOX4/Src regulates ANP secretion through activating ERK1/2 and Akt/GATA4 signaling in beating rat hypoxic atria

  • Wu, Cheng-zhe;Li, Xiang;Hong, Lan;Han, Zhuo-na;Liu, Ying;Wei, Cheng-xi;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.159-166
    • /
    • 2021
  • Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 μM) and BQ788 (0.3 μM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 μM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 μM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxia-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 μM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 μM) and LY294002 (10.0 μM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

Effect of Methanol Extract from Cassia mimosoides var. nomame on Ischemia/Reperfusion-induced Renal Injury in Rats

  • Baek, Hae Sook;Lim, Sun Ha;Ahn, Ki Sung;Lee, Jong Won
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.135-143
    • /
    • 2013
  • Objectives : The purpose of this study was to determine whether the methanol extract of Cassia mimosoides var. nomame Makino, a naturally growing plant in Korea, could prevent the renal-ischemia/reperfusion injury in a rat model or not. Methods : The radical scavenging activities of the extracts, and ascorbic acid as a positive control, were measured in vitro. At one hour after an intraperitoneal injection of the extract (400 mg/kg), renal ischemia/reperfusion injury was generated by 40 min clamping of the left renal artery in rats. After renal ischemia/reperfusion and 24 hr restoration of blood circulation, the serum creatinine concentration was measured. And the extent of epithelial cell injury and apoptosis was assessed by various staining technologies. The Bax/Bcl-2 ratio and activated caspase-3 were assessed by immunohistochemistry. Results : The extract showed a slightly lower level of radical scavenging activity than that of ascorbic acid. Compared to those of the vehicle-treated group, the extract-treated group displayed a significantly smaller tubular epithelial cell injury of 54% reduction in the outer medulla region and a lower serum creatinine concentration of 50% reduction. It seems that the reduction in cellular injury is due to the attenuation of the Bax/Bcl-2 ratio, and the inhibition of caspase-3 activation by the extract of Cassia mimosoides. Conclusions : Cassia mimosoides var. nomame Makino could be a good candidate for a prophylactic agent against the ischemia/reperfusion/induced kidney injury.

Neuroprotective effects of three flavonoids from Acer okamotoanum against neurotoxicity induced by amyloid beta in SH-SY5Y cells

  • Ji Hyun Kim;Sanghyun Lee;Eun Ju Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.227-237
    • /
    • 2022
  • Amyloid beta (Aβ) is produced from an amyloid precursor protein by the activation of the amyloidogenic pathway, and it is widely known to cause Alzheimer's disease (AD). In this study, we investigated the neuroprotective effects of three flavonoids, quercitrin, isoquercitrin, and afzelin, from Acer okamotoanum against Aβ-induced neurotoxicity in SH-SY5Y neuronal cells. Aβ25-35 treatments resulted in decreased cell viability and increased levels of nuclei condensation and fragmentation. However, an isoquercitrin treatment dose-dependently increased cell viability and decreased nuclei condensation and fragmentation levels. SH-SY5Y cells treated with Aβ25-35 showed increased reactive oxygen species (ROS) production compared to that from cells not treated with Aβ25-35. However, treatment with the three flavonoids significantly inhibited ROS production compared to an Aβ25-35-treated control group, indicating that the three flavonoids blocked neuronal oxidative stress. For a closer examination of the neuroprotective mechanisms, we measured the expressions of the non-amyloidogenic pathway-related proteins of a disintegrin and metalloprotease 10 (ADAM10) and the tumor necrosis factor-α converting enzyme (TACE). An isoquercitrin treatment enhanced the expressions of ADAM10 compared to the control group. In addition, the three flavonoids activated the non-amyloidogenic pathway via the upregulation of TACE. In conclusion, we demonstrated neuroprotective effects of three flavonoids from A. okamotoanum, in particular isoquercitrin, on neurotoxicity by the regulation of the non-amyloidogenic pathway in Aβ25-35-treated SH-SY5Y cells. Therefore, we suggest that flavonoids from A. okamotoanum may have some potential as therapeutics of AD.

Protective effects against alcoholic liver damage: potential of herbal juice (HJ), blend of Zingiber officinale Roscoe and Pueraria lobata Ohwi extracts

  • Young Yun Jung;You Yeon Choi;Woong Mo Yang;Kwang Seok Ahn
    • Journal of Convergence Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Objectives : Alcohol-induced liver disease advances as to reactive oxygen species (ROS) and cellular lipid peroxidation increase. We examined the hepatoprotective effects of Zingiber officinale Roscoe rhizome extract (ZR), Pueraria lobata Ohwi flower extracts (PF), and a newly developed herbal juice (HJ), which was a combination of ZR and PF extracts, against ethanol-induced hepatotoxicity. Methods: The study utilized the human hepatoma cell line HepG2 cells to validate the hepatoprotective effect of HJ (50~200 ㎍/mL) against ethanol (EtOH, 700 mM)-induced liver damage. Results: HJ effectively reduced the protein expression of sterol regulatory element-binding transcription factor 1, adiponectin, and AMP-activated protein kinase in EtOH-induced HepG2 cells. The levels of ROS, total cholesterol, and triglycerides, which are the result of various synthesis and lipogenesis processes induced by EtOH in the liver, were reduced by HJ. Furthermore, the activities of alcohol dehydrogenase and aldehyde dehydrogenase, enzymes linked to alcohol degradation, were more effectively downregulated by HJ treatment compared to treatment with ZR and PF alone, all without causing cytotoxic effects. Conclusions: HJ protects the liver by inhibiting EtOH-induced lipogenesis, lowering ROS generation, and improving alcohol degradation, which is more effective than ZR and PF alone. Further, in vivo experiments can offer additional evidence regarding the effectiveness, safety, and underlying mechanism of action of HJ.

  • PDF