• Title/Summary/Keyword: Activated material

Search Result 745, Processing Time 0.031 seconds

Development of EDLC using aqueous polymeric gel electrolytel (수용성 고분자 젤 전해질을 이용한 전기이중층 커패시터 의 개발)

  • 오길훈;김한주;최원경;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.581-584
    • /
    • 2001
  • For the first time, a totally solid state electric double layer capacitor has been fabricated using an alkaline polymer electrolyte and an activated carbon powder as electrode material. The polymer electrolyte serves both as separator as well as electrode binder. The capacitor has a three-layer structure; electrode-electrolyte-electrode. A cyclic voltammetry and constant current discharge have been used for the determination of the electro chemical performance of capacitors.

  • PDF

Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness (축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석)

  • Choi, H.C.;Song, J.I.;Kwon, D.J.;Kwag, J.H.;Yan, C.B.;Yoo, Y.H.;Park, Young-Tae;Park, K.S.;Park, D.K.;Kim, Y.K.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.211-218
    • /
    • 2007
  • This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with $N_2$ gas at $400^{\circ}C$ for 1 hour, activating by reaction with steam at a temperature of $750^{\circ}C$ for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and $1,040\;m^2/g$, respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to $5.02\;{\AA}$, but coconut shell was $0.30\;{\AA}$. Iodine absorptiveness of activated carbon from livestock manure was $530{\sim}580mg/g$. But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml

  • PDF

Tension Strength and Expansion Property Analysis Research to Utillize Thermoplasticity Recycling Plastic to Single Play Waterproof System for Construction (열가소성 재활용수지를 건축용 단층방수시스템에 활용하기 위한 인장 및 신장 특성 분석 연구)

  • Park, Sung-Woo;Ko, Jin-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.89-94
    • /
    • 2011
  • In this research, among thermoplasticity plastic raw material that recycling is possible polyolefine(TPO) and polyvinyl chloride(PVC) as target recycling plan examine wish to. It is polyolefine(TPO) and polyvinyl chloride(PVC)) is mediocrity material that there are a lot of amount useds among plastic material and it is material that recycling is also activated most. Long term made first new regulation raw material, by-product raw material happened at process of production at second factory and third time to examine recycling plan of this material divides this as raw material that pass through process separation and pelet Tuesday and analyzed each special quality removing each removed waste after is used. Measure tension strength and ext. heightening gradually mixing proportion of refreshing resources on standard Sample manufactured as new raw material and application examined possibility availability to single fly system.

  • PDF

HARDNESS CHANGE OF LIGHT-ACTIVATED GLASS IONMER CEMENT WITH THICKNESS AND TIME (광경화형 글래스아이오노머 시멘트의 두께 및 시간경과에 따른 경도의 변화)

  • Lee, Kyoung-Jin;Oh, Won-Mann;Kim, Sun-Hun
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.303-315
    • /
    • 1995
  • An adequate and homogeneous cure of light-activated restroative material is very important for improvement of marginal adaptation and prevention of marginal leakage, secondary caries and pulpal irritation as well as expressing natural physical property of that material. The purpose of this study was to evaluate the change of surface hardness and cure uniformity of light-activated glass ionomer cements. Restorative(Fuji II LC, Vitremer) and lining(Baseline VLC, Vitrebond) light-activated glass ionomer cements were investigated for this study. The surface hardness of the top and bottom surfaces and cure uniformity of each 1mm, 1.5mm, 2mm, 2.5mm & 3mm in the thickness of specimen were measured immediately, at 1 hour, 24 hours and 1 week after light activation. The surface hardness change and cure uniformity of all the specimens were measured by Knoop hardness tester. The results were as follows. 1. The surface hardness of top and bottom surfaces in all groups increased with time(p<0.01). 2. Both top and bottom surfaces hardness of Vitrebond group measured immediately after light-activation were significantly lower than those of the other groups(p<0.01). 3. The surface hardness of top and bottom surfaces of restorative light -activated glass ionomer cements was higher than those of lining materials at 1 week(p<0.10). 4. Surface hardness of Vitremer group decreased as the specimen thickness increased, except top and bottom surfaces hardness of the specimen at 1 week(p<0.01). There was no significant difference in the surface hardness of Fuji II LC with changes in the thickness except bottom surface hardness of specimen at 24 hours and 1 week (p>0.05). 5. Surface hardness of Vitrebond group significantly decreased as the specimen thickness increased(p<0.01). There was no significant difference in the surface hardness of Baseline VLC group with changes in the thickness except bottom surface hardness of specimen measured immediately after light -activation(p>0.05). 6. The hardness ratio of top against bottom surface in all groups decreased with time(p<0.05). 7. There was no significant difference in the hardness ratio of top against bottom surface with changes of the thickness except Vitrebond group, 24 hours and 1 week of Vitremer group and 1 week of Baseline VLC group (p>0.05). These results suggest that surface hardness of restorative ligh-activated glass ionomer cements were highter than those of lining light-activated materials. In all groups, the surface hardness and cure uniformity continuously increased with time.

  • PDF

Fundamental Study of Alkali Activated Cement Mortar for Evaluating Applicability of Partial-Depth Repair (도로포장 보수재 활용 가능성 평가를 위한 알칼리 활성 시멘트 모르타르 기초연구)

  • Jeon, Sung Il;An, Ji Hwan;Kwon, Soo Ahn;Yun, Kyung Ku
    • International Journal of Highway Engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • PURPOSES : This study is to evaluate the feasibility of using the alkali activated cement concrete for application of partial-depth repair in pavement. METHODS : This study analyzes the compressive strength of alkali activated cement mortar based on the changes in the amount/type/composition of binder(portland cement, fly ash, slag) and activator(NaOH, $Na_2SiO_3$, $Na_2CO_3$, $Na_2SO_4$). The mixture design is divided in case I of adding one kind-activator and case II of adding two kind-activators. RESULTS : The results of case I show that $Na_2SO_4$ based mixture has superior the long-term strength when compared to other mixtures, and that $Na_2CO_3$ based mixture has superior the early strength when compared to other mixtures. But the mixtures of case I is difficult to apply in the material for early-opening-to-traffic, because the strength of all mixtures isn't meet the criterion of traffic-opening. The results of case II show that NaOH-$Na_2SiO_3$ based mixtures has superior the early/long-term strength when compared to NaOH-$Na_2SiO_3$ based mixtures. In particular, the NaOH-$Na_2SiO_3$ based some mixtures turned out to pass the reference strength(1-day) of 21MPa as required for traffic-opening. CONCLUSIONS : With these results, it could be concluded that NaOH-$Na_2SiO_3$ based mixtures can be used as the material of pavement repair.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Enhancement of Efficiency of Activated Carbon Impregnated Chitosan for Carbon Dioxide Adsorption

  • Patkool, Chaiwat;Chawakitchareon, Petchporn;Anuwattana, Rewadee
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.289-292
    • /
    • 2014
  • The effect of carbon dioxide ($CO_2$) on global warming is serious problem. The adsorption with solid sorbents is one of the most appropriate options. In this study, the most interesting adsorbent is granular activated carbon (GAC). It is suitable material for $CO_2$ adsorption because of its simple availability, many specific surface area, and low-cost material. Afterwards, GAC was impregnated with chitosan solution as impregnated granular activated carbon (CGAC) in order to improve the adsorption capacity of GAC. This research aims to compare the physical and chemical characteristics of GAC and CGAC. The experiment was carried out to evaluate the efficiency of $CO_2$ adsorption between GAC and CGAC. The results indicated that the iodine number of GAC and CGAC was 137.17 and 120.30 mg/g, respectively. The Brunauer-Emmett-Teller results (BET) of both GAC and CGAC show that specific surface area was 301.9 and $531.3m^2/g$, respectively; total pore volume was 0.16 and $0.29cm^3/g$, respectively; and mean diameter of pore was 2.18 and 2.15 nm, respectively. Finally, the $CO_2$ adsorption results of both GAC and CGAC in single column how the maximum adsorption capacity was 0.17 and 0.25 mol/kg, respectively; how degeneration time was 49.6 and 80.0 min, respectively; and how the highest efficiency of $CO_2$ adsorption was 91.92% and 91.19%, respectively.

Solidification of uranium tailings using alkali-activated slag mixed with natural zeolite

  • Fulin Wang;Min Zhou;Cheng Chen;Zhengping Yuan;Xinyang Geng;Shijiao Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.523-529
    • /
    • 2023
  • Cemented uranium tailings backfill created from alkali-activated slag (CUTB) is an effective method of disposing of uranium tailings. Using some environmental functional minerals with ion exchange, adsorption, and solidification abilities as backfill modified materials may improve the leaching resistance of the CUTB. Natural zeolite, which has good ion exchange and adsorption characteristics, is selected as the backfill modified material, and it is added to the backfill materials with cementitious material proportions of 4%, 8%, 12%, and 16% to prepare CUTB mixtures with environmental functional minerals. After the addition of natural zeolite, the uniaxial compressive strength (UCS) of the CUTB decreases, but the leaching resistance of the CUTB increases. When the natural zeolite content is 12%, the UCS reaches the minimum value of 8.95 MPa, and the concentration of uranium in the leaching solution is 0.28-8.07 mg/L, the leaching rate R42 is 9.61×10-7 cm/d, and cumulative leaching fraction P42 is 8.53×10-4 cm, which shows that the alkali-activated slag cementitious material has a good curing effect on the CUTB, and the addition of environmental functional minerals helps to further improve the leaching resistance of the CUTB, but it reduces the UCS to an extent.

Charateristics on the PCM absorbed porous media as thermal storage applicable for construction material (건자재활용을 위한 축열용 다공성 미립자 상변환 물질 흡착 특성)

  • Lee, Hyo-Jin
    • KIEAE Journal
    • /
    • v.17 no.3
    • /
    • pp.107-112
    • /
    • 2017
  • Purpose: Both silica gel and activated carbon black particles were adopted for use as PCM absorbed porous media applicable as construction materials. To investigate usable methods for absorbing PCM into the media, they were soaked into PCM and also tested for enhancement of PCM absorption into them. Method: To test PCM absorption into some porous media such as both ${\varphi}1{\sim}2mm$ and $10{\mu}m$ silica gels, and $50{\mu}m$ activated carbon black, $43^{\circ}C$ PCM was used as a laten heat material. The method, soaking into PCM was applied to this study, and the media were moderately rotated by centrifuge to have the extra PCM flow out. DSC analysis was conducted to investigate the melting and solidifying of the PCM absorbed into the porous media. Result: It was found that PCM was absorbed into the porous media by over 85 wt% of all particles. In addition, it was noted that the ultrasonic vibrator was accelerating the PCM absorption into the particles to three times higher speed than simple soaking. Centrifuge was adopted to remove extra PCM sticking on the particle surfaces and extra PCM was moderately removed from the surfaces of the particles. DSC analysis indicated that the latent heat of the absorbed PCM particles was 160 J/g, and the melting temperature was approximately $40^{\circ}C{\sim}50^{\circ}C$.

Characteristics of Non-alloyed Mo Ohmic Contacts to Laser Activated p-type SiC (레이저 활성화에 의한 p형 Sic와 비합금 Mo 오믹 접합)

  • 이형규;이창영;송지헌;최재승;이재봉;김기호;김영석;박근형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.557-563
    • /
    • 2003
  • SiC has been an useful material for the high voltage, high temperature, and high frequency devices, however, the required high process temperature to activate the implanted p-type dopants has hindered further developments. In this study, we report, for the first time, on the laser activation of implanted Al and non-alloyed Mo ohmic contacts and its application to MOSFET fabrication. The contact and sheet resistance measured from CTLM patterns have decreased by increasing laser power, and the lowest values are 3.9 $K\Omega$/$\square$ and 1.3 $\times$ 10$^{-3}$ $\Omega$-cm$^2$, respectively, at the power density of 1.45 J/cm$^2$ The n-MOSFETs fabricated on laser activated p-well exhibit well-behaved I-V characteristics and threshold voltage reduction by reverse body voltage. These results prove that the laser process for implant activation is an alternative low temperature technology applicable to SiC devices.