• Title/Summary/Keyword: Activated factor X

Search Result 73, Processing Time 0.031 seconds

Angiogenic factor-enriched platelet-rich plasma enhances in vivo bone formation around alloplastic graft material

  • Kim, Eun-Seok;Kim, Jae-Jin;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • Although most researchers agree that platelet-rich plasma (PRP) is a good source of autogenous growth factors, its effect on bone regeneration is still controversial. The purpose of this study was to evaluate whether increasing angiogenic factors in the human PRP to enhance new bone formation through rapid angiogenesis. MATERIAL AND METHODS. In vitro, the human platelets were activated with application of shear stress, $20\;{\mu}g/ml$ collagen, 2 mM $CaCl_2$ and 10U thrombin/$1\;{\times}\;10^9$ platelets. Level of vascular endothelial growth factor (VEGF) and platelet microparticle (PMP) in the activated platelets were checked. In the animal study, human angiogenic factors-enriched PRP was tested in 28 athymic rat's cranial critical bone defects with $\beta$-TCP. Angiogenesis and osteogenesis were evaluated by laser Doppler perfusion imaging, histology, dual energy X-ray densinometry, and micro-computed tomography. RESULTS. In vitro, this human angiogenic factors-enriched PRP resulted in better cellular proliferation and osteogenic differentiation. In vivo, increasing angiogenic potential of the PRP showed significantly higher blood perfusion around the defect and enhanced new bone formation around acellular bone graft material. CONCLUSION. Angiogenic factor-enriched PRP leads to faster and more extensive new bone formation in the critical size bone defect. The results implicate that rapid angiogenesis in the initial healing period by PRP could be supposed as a way to overcome short term effect of the rapid angiogenesis.

Korean Red Ginseng alleviates neuroinflammation and promotes cell survival in the intermittent heat stress-induced rat brain by suppressing oxidative stress via estrogen receptor beta and brain-derived neurotrophic factor upregulation

  • Iqbal, Hamid;Kim, Si-Kwan;Cha, Kyu-Min;Jeong, Min-Sik;Ghosh, Prachetash;Rhee, Dong-kwon
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.593-602
    • /
    • 2020
  • Background: Heat stress orchestrates neurodegenerative disorders and results in the formation of reactive oxygen species that leads to cell death. Although the immunomodulatory effects of ginseng are well studied, the mechanism by which ginseng alleviates heat stress in the brain remains elusive. Methods: Rats were exposed to intermittent heat stress for 6 months, and brain samples were examined to elucidate survival and antiinflammatory effect after Korean Red Ginseng (KRG) treatment. Results: Intermittent long-term heat stress (ILTHS) upregulated the expression of cyclooxygenase 2 and inducible nitric oxide synthase, increasing infiltration of inflammatory cells (hematoxylin and eosin staining) and the level of proinflammatory cytokines [tumor necrosis factor α, interferon gamma (IFN-γ), interleukin (IL)-1β, IL-6], leading to cell death (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) and elevated markers of oxidative stress damage (myeloperoxidase and malondialdehyde), resulting in the downregulation of antiapoptotic markers (Bcl-2 and Bcl-xL) and expression of estrogen receptor beta and brain-derived neurotrophic factor, key factors in regulating neuronal cell survival. In contrast, KRG mitigated ILTHS-induced release of proinflammatory mediators, upregulated the mRNA level of the antiinflammatory cytokine IL-10, and increased myeloperoxidase and malondialdehyde levels. In addition, KRG significantly decreased the expression of the proapoptotic marker (Bax), did not affect caspase-3 expression, but increased the expression of antiapoptotic markers (Bcl-2 and Bcl-xL). Furthermore, KRG significantly activated the expression of both estrogen receptor beta and brain-derived neurotrophic factor. Conclusion: ILTHS induced oxidative stress responses and inflammatory molecules, which can lead to impaired neurogenesis and ultimately neuronal death, whereas, KRG, being the antioxidant, inhibited neuronal damage and increased cell viability.

Analysis of X Irradiation Related Genes in HL60 Cells Using cDNA Microarray (cDNA Microarray를 이용한 HL60 세포주에서 방사선 조사 관련 유전자의 검색 및 분석)

  • Park, Keon-Uk;Hwang, Mi-Sun;Suh, Seong-Il;Suh, Min-Ho;Kwon, Taeg-Kyu;Park, Jong-Wook;Cho, Jae-We;Choi, Eun-Ju;Baek, Won-Ki
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.4
    • /
    • pp.299-308
    • /
    • 2000
  • Recently developed cDNA microarray or DNA chip technology allows expression monitoring of expression of hundreds and thousands of genes simultaneously and provides a format for identifying genes as well as changes in their activity. In order to search for changes in gene expression after X irradiation in HL60 cells, cDNA microarray technique was done. In this study, expression of 588 human genes (including oncogenes, tumor suppressor genes, cell cycle regulator genes, intracellular signal transduction modulator genes, apoptosis related genes, transcription factor genes, growth factors and receptor genes, cytokine genes, etc) were analyzed. For cDNA microarray analysis mRNAs were extracted from control and 8 Gy-irradiated HL60 cells. As a result the changes in expression of several genes were observed. This alteration of gene expression was confirmed by reverse transcription-polymerase chain reaction. The expression of heat shock 60 KD protein, c-jun, erythroid differentiation factor, CPP32, myeloid cell nuclear differentiation antigen, MAP kinase-activated protein kinase, interleukin-8, monocyte chemotactic peptide 1 and RANTES genes was increased, but the expression of p55CDC gene was decreased after X irradiation.

  • PDF

The role of myokine(interleukin) and exercise for the prevention of scarcopenia and anti-inflammation (근감소 및 염증 예방을 위한 운동과 인터루킨(IL-interleukin)의 역할)

  • Byun, Yong-Hyun;Park, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.509-518
    • /
    • 2018
  • The purpose of this study was myokine product and role with physical activity and literature review. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular disease, colon cancer, dementia and even depression. And myokine has been regarded an important factor of exercise training and brain growth factor for the prevention of Alzheimier's disease. During exercise the release of anti-inflammatory myokine from contracting muscle controled the metabolic response, and IL-4, IL-6, IL-7, IL-10, and IL-15 controled muscle hypertrophy, myogenesis and angiogenenesis. IL-6 promoted the lipid metabolism through AMPK activation. IL-1Ra, IL-10 and sTNF-R inhibited $TNF-{\alpha}$ as the pro-inflammatory cytokine. IL-15 increased the releasing volume from contracting muscle, and promoted the anabolic factor of muscle growth. IL-7 and IL-8 activated the angiogenesis through the more activation of C-X-C receptor signal transmission.

Removal of Volatile Organic Silicon Compounds (Siloxanes) from Landfill Gas by Adsorbents (흡착제에 의한 매립가스 중 휘발성 유기규소화합물(실록산) 제거특성)

  • Seo, Dong-Cheon;Song, Soo-Sung;Won, Jong-Choul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.793-802
    • /
    • 2009
  • Adsorption properties were estimated for the organic silicon compounds (siloxanes) in an actual landfill gas (LFG) using adsorbents such as coconut activated carbon, coal activated carbon, silica gel, sulfur adsorbent, carbonized sludge, and molecular sieve 13X. Coconut activated carbon showed the highest removal efficiency of more than 95%. The desorption of hexamethyldisiloxane (L2) from the adsorbent, however, resulted in the remarkable concentration variation of the compound in the treated gas. Silica gel, which had high adsorption capacity for L2 in single substance adsorption experiment in the other study, could not remove the component in the actual landfill gas while it adsorbed well octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in the LFG. Therefore the elimination of hexamethyldisiloxane is an important factor to determine the level of total organosilicon compound in pretreated landfill gas. Moreover, the L2 from the actual landfill gas was effectively adsorbed by the serial adsorption test using two columns packed with coconut activated carbon which has the great capacity of siloxanes removal among others. In order to utilize efficiently LFG as a renewable energy, the emission and adsorptive characteristics of the substance to be treated should be considered for the organization, operation, and management of pretreatment process.

Paricalcitol attenuates indoxyl sulfate-induced apoptosis through the inhibition of MAPK, Akt, and NF-κB activation in HK-2 cells

  • Park, Jung Sun;Choi, Hoon In;Bae, Eun Hui;Ma, Seong Kwon;Kim, Soo Wan
    • The Korean journal of internal medicine
    • /
    • v.34 no.1
    • /
    • pp.146-155
    • /
    • 2019
  • Background/Aims: Indoxyl sulfate (IS) is a uremic toxin and an important causative factor in the progression of chronic kidney disease. Recently, paricalcitol (19-nor-1,25-dihydroxyvitamin D2) was shown to exhibit protective effects in kidney injury. Here, we investigated the effects of paricalcitol treatment on IS-induced renal tubular injury. Methods: The fluorescent dye 2',7'-dichlorofluorescein diacetate was used to measure intracellular reactive oxygen species (ROS) following IS administration in human renal proximal tubular epithelial (HK-2) cells. The effects of IS on cell viability were determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and levels of apoptosis-related proteins (Bcl-2-associated protein X [Bax] and B-cell lymphoma 2 [Bcl-2]), nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65, and phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) were determined by semiquantitative immunoblotting. The promoter activity of $NF-{\kappa}B$ was measured by luciferase assays and apoptosis was determined by f low cytometry of cells stained with f luorescein isothiocyanate-conjugated Annexin V protein. Results: IS treatment increased ROS production, decreased cell viability and induced apoptosis in HK-2 cells. IS treatment increased the expression of apoptosis-related protein Bax, decreased Bcl-2 expression, and activated phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt. In contrast, paricalcitol treatment decreased Bax expression, increased Bcl-2 expression, and inhibited phosphorylation of MAPK, $NF-{\kappa}B$ p65, and Akt in HK-2 cells. $NF-{\kappa}B$ promoter activity was increased following IS, administration and was counteracted by pretreatment with paricalcitol. Additionally, flow cytometry analysis revealed that IS-induced apoptosis was attenuated by paricalcitol treatment, which resulted in decreased numbers of fluorescein isothiocyanate-conjugated Annexin V positive cells. Conclusions: Treatment with paricalcitol inhibited IS-induced apoptosis by regulating MAPK, $NF-{\kappa}B$, and Akt signaling pathway in HK-2 cells.

Epidermal Growth Factor Induces Vasoconstriction Through the Phosphatidylinositol 3-Kinase-Mediated Mitogen-Activated Protein Kinase Pathway in Hypertensive Rats

  • Kim, Jung-Hwan;Lee, Chang-Kwon;Park, Hyo-Jun;Kim, Hyo-Jin;So, Hyun-Ha;Lee, Keun-Sang;Lee, Hwan-Myung;Roh, Hui-Yul;Choi, Wahn-Soo;Park, Tae-Kyu;Kim, Bo-Kyung
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2006
  • We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOCA-salt hypertensive rats compared with those from sham-operated rats. AG1478, PD98059, and LY294002, inhibitors of EGF receptor (EGFR) tyrosine kinase, MAPK/extracellular signal-regulated kinase (ERK) kinase, and phosphatidylinositol 3-kinase (PI3K), respectively, inhibited the contraction and the activity of ERK1/2 that were elevated by EGF. Y27632 and GF109203X, inhibitors of Rho kinase and protein kinase C, respectively, attenuated EGF-induced contraction, with no diminution of ERK1/2 activity. Although EGF also elevated the activity of EGFR tyrosine kinase in both sham-operated and DOCA-salt hypertensive rats, the expression and the magnitude of activation did not differ between strips. These results strongly suggest that EGF induces contraction by the activation of ERK1/2, which is regulated by the PI3K pathway in the aortic smooth muscle of DOCA-salt hypertensive rats.

  • PDF

Decreased Neutrophil Apoptosis in Patients with Sepsis is Related to the Activation of NF-κB (패혈증 환자에서 NF-κB 활성화에 의한 호중구 아포프토시스의 억제)

  • Kwon, Sung Youn;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.5
    • /
    • pp.495-509
    • /
    • 2003
  • Background : Neutrophil-mediated inflammation is usually self-limiting, because neutrophils have a remarkably short life span. Prolonged neutrophil survival, which is caused by decreased spontaneous apoptosis, leads to persistent inflammation in sepsis. Because many inflammatory cytokines, which generate signals that delay apoptosis, are regulated by nuclear factor-${\kappa}B$ transcription factor, we hypothesized that nuclear factor-${\kappa}B$ might be related to the reduced neutrophil apoptosis observed in sepsis. Methods : Neutrophils of healthy volunteers and sepsis patients were freshly isolated from venous blood. Neutrophil apoptosis was assayed with two approaches : by counting apoptotic cells under a microscope and by flow cytometry using Annexin V. The activity of nuclear factor-${\kappa}B$ was assessed by immunofluorescent staining or electrophoretic mobility shift assay. Expression of X-linked inhibitor of apoptosis was measured by western blot assay. Results : We confirmed reduced spontaneous neutrophil apoptosis in patients with sepsis. The number of apoptotic neutrophils in patients with sepsis increased to the level of that in healthy controls after cycloheximide treatment, suggesting that decreased spontaneous neutrophil apoptosis is dependent on de novo protein synthesis. In patients with sepsis, basal neutrophil nuclear factor-${\kappa}B$ was activated compared to the level in healthy controls. Moreover, a blockade of nuclear factor-${\kappa}B$ activity reversed the decreased spontaneous neutrophil apoptosis in sepsis patients. Meanwhile, X-linked inhibition of apoptosis expression, which is regulated by nuclear factor-${\kappa}B$, decreased 24 hours after incubation in healthy persons, but persisted for 24 hours in patients with sepsis. Conclusion : These observations suggest that the reduced spontaneous neutrophil apoptosis observed in patients with sepsis may be related to the induction of survival protein by nuclear factor-${\kappa}B$.

The Effect of Sludge Settleability on the Performance of DNR Process (슬러지 침전성이 DNR 공정에 미치는 영향 평가)

  • Suhl, Chang-Won;Lan, Thi Nguyen;Jeong, Hyeong-Seok;Lee, Sang-Min;Lee, Eui-Sin;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.273-280
    • /
    • 2006
  • The sludge settleability is a key factor for operating activated sludge process as well as BNR (biological nutrient removal) process, because the poor sludge settling causes an increase of suspended solid in the effluent. In order to improving the sludge settleability, a settling agent such as iron dust can be applied. In this study, the effect of sludge settleability on the performance of DNR (Daewoo nutrient removal) process was investigated with GPS-X, which is the popular wastewater treatment process model program, and the result of modeling was verified with operating lab-scale DNR process. As a result, if the sludge blanket keeps stable in the secondary settling tank, the effluent quality is similar in spite of different SVI values. And in case of the good sludge settleability, short HRT or long SRT increased the biomass concentration in the bioreactor, and improved the pollutant removal efficiency. In spite of daily influent changing, the good sludge settleability also guaranteed the stable effluent quality. And the results of the lab-scale DNR process experiment could support the simulated results.

The Effect of Ion Implantation on the Barrier Height in PtSi-nSi Schottky Diode (PtSi-nSi 쇼트키 다이오드에서 이온 주입이 장벽높이의 변화에 미치는 영향)

  • Lee, Yong Jae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.712-718
    • /
    • 1986
  • A shallow n+ layer of implanted phosphorus was used to lower the barrier height of PtSinSi schottky diodes. The reduction of barrier height of the forward turn-on voltages from 400mV to 180mV of the forward was followed by implantation of phosphorus at 35KeV with an ion dose of 8.0x10**12 atoms/cm\ulcornerand was activated at 925\ulcorner for 30min in dry O2. The test result showed that, as the ion-implanted dose increased, the forward turn-on voltage and reverse breakdown voltage were linearly decreased, but the saturation current and ideality factor(n) were linearly increased.

  • PDF