• Title/Summary/Keyword: Activated dynamics

Search Result 79, Processing Time 0.021 seconds

Reproduction and Population Dynamics of Marbled Sole Limanda yokohamae 3. Reproduction (문치가자미, Limanda yokohamae의 생식기구 및 개체군 동태 1. 생식기구)

  • LEE Taek Yuil;KANG Yong Joo;LEE Byung Don
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.3
    • /
    • pp.253-261
    • /
    • 1985
  • The reproduction of marbled sole Limanda yokohamae, caught near around the southeastern coast of Korea, from December 1983 to November 1984, was investigated based on such annual variations as gonadosomatic index(GSL), gametogenesis, reproductive cycle, spawning number, hepatosomatic index (HSI), and fatness. GSI began to increase in the autumn season with the onset of shorter day length and colder water temperature, and reached the maximum value in December with the shortest day length and the lowest temperature over the year. The gonad activated the proliferation of oogonia and spermatogonia in June, reached the mature stage in October, ripe in December, and spawning from the end of December to January. After spawning, it showed the resting stage which gonad remained regressive and suppressive from February to May. In addition, the adult individuals observed discharged eggs only once during their spawning period. At yolk globular stage, the substance of vitellogenin synthesized from the liver was considered to participate in the active yolk accumulation of oocytes. Marbled sole was concluded to be a typical winter spawning species in that such environmental factors as short day length and low water temperature were closely related with the gametogenesis, the stimulation of oocyte maturation, and were also affecting the ovulation.

  • PDF

N-acetylcysteine and the human serum components that inhibit bacterial invasion of gingival epithelial cells prevent experimental periodontitis in mice

  • Alam, Jehan;Baek, Keum Jin;Choi, Yun Sik;Kim, Yong Cheol;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.6
    • /
    • pp.266-273
    • /
    • 2014
  • Purpose: We previously reported that human serum significantly reduces the invasion of various oral bacterial species into gingival epithelial cells in vitro. The aims of the present study were to characterize the serum component(s) responsible for the inhibition of bacterial invasion of epithelial cells and to examine their effect on periodontitis induced in mice. Methods: Immortalized human gingival epithelial (HOK-16B) cells were infected with various 5- (and 6-) carboxy-fluorescein diacetate succinimidyl ester-labeled oral bacteria, including Fusobacterium nucleatum, Provetella intermedia, Porphyromonas gingivalis, and Treponiema denticola, in the absence or presence of three major serum components (human serum albumin [HSA], pooled human IgG [phIgG] and ${\alpha}1$-antitrypsin). Bacterial adhesion and invasion were determined by flow cytometry. The levels of intracellular reactive oxygen species (ROS) and activation of small GTPases were examined. Experimental periodontitis was induced by oral inoculation of P. gingivalis and T. denticola in Balb/c mice. Results: HSA and phIgG, but not ${\alpha}1$-antitrypsin, efficiently inhibited the invasion of various oral bacterial species into HOK-16B cells. HSA but not phIgG decreased the adhesion of F. nucleatum onto host cells and the levels of intracellular ROS in HOK-16B cells. N-acetyl-cysteine (NAC), a ROS scavenger, decreased both the levels of intracellular ROS and invasion of F. nucleatum into HOK-16B cells, confirming the role of ROS in bacterial invasion. Infection with F. nucleatum activated Rac1, a regulator of actin cytoskeleton dynamics. Not only HSA and NAC but also phIgG decreased the F. nucleatum-induced activation of Rac1. Furthermore, both HSA plus phIgG and NAC significantly reduced the alveolar bone loss in the experimental periodontitis induced by P. gingivalis and T. denticola in mice. Conclusions: NAC and the serum components HSA and phIgG, which inhibit bacterial invasion of oral epithelial cells in vitro, can successfully prevent experimental periodontitis.

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

FINITE ELEMENT STRESS ANALYSIS OF CLASS V COMPOSITE RESIN RESTORATION SUBJECTED TO CAVITY FORMS AND PLACEMENT METHODS (와동 형태와 충전 방법에 따른 Class V 복합 레진 수복치의 유한요소법적 응력 분석)

  • Son, Yoon-Hee;Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.91-108
    • /
    • 2000
  • Most of cervical abrasion and erosion lesions show gingival margin where the cavosurface angle is on cementum or dentin. Composite resin restoration of cervical lesion shrink toward enamel margin due to polymerization contraction. This shrinkage has clinical problem such as microleakage and secondary caries. Several methods to diminish contraction stress of composite resin restoration, such as modifying cavity form and building up restorations in several increments have been attempted. The purpose of this study was to compare polymerization contraction stress of composite resin in Class V cavity subjected to cavity forms and placement methods. In this study, finite element model of 5 types of Class V cavity was developed on computer tomogram of maxillary central incisor. The types are : 1) Box cavity 2) Box cavity with incisal bevel 3) V shape cavity 4) V shape cavity with incisal bevel 5) Saucer shape cavity. The placement methods are 1) Incisal first oblique incremental curing 2) Bulk curing. An FEM based program for light activated polymerization is not available. For simulation of curing dynamics, time dependent transient thermal conduction analysis was conducted on each cavity and each placement method. For simulation of polymerization shrinkage, thermal stress analysis was performed with each cavity and each placement method. The time-temperature dependent volume shrinkage rate, elastic modulus, and Poisson's ratio were determined in thermal conduction data. The results were as follows : 1. With all five Class V cavifies, the highest Von Mises stress at the composite-tooth interface occurred at gingival margin. 2. With box cavity, V shape cavity and saucer cavity, Von Mises stress at gingival margin of V shape cavity was lower than the others. And that of box cavity was lower than that of saucer cavity. 3. Preparing bevel at incisal cavosurface margin decreased the rate of stress development in early polymerization stage. 4. Preparing bevel at incisal cavosurface margin of V shape cavity increased the Von Mises stress at gingival margin, but decreased at incisal margin. 5. At incisal margin, stress development by bulk curing method was rapid at early stage. Stress development by first increment of incremental curing method was also rapid but lower than that by bulk curing method, however after second increment curing final stress was the same for two placement methods. 6. At gingival margin, stress development by incremental curing method was suddenly rapid at early stage of second increment curing, but final stress was the same for two placement methods.

  • PDF

Immobilization stress increased cytochrome P450 1A2 (CYP1A2) expression in the ovary of rat

  • Hwang, Jong-Chan;Kim, Hwan-Deuk;Park, Byung-Joon;Jeon, Ryoung-Hoon;Baek, Su-Min;Lee, Seoung-Woo;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Under the stressed condition, a complex feedback mechanism for stress is activated to maintain homeostasis of the body and secretes several stress hormones. But these stress hormones impair synthesis and secretion of the reproductive hormones, followed by suppression of ovarian function. Cytochrome P450 1A2 (CYP1A2) plays a major role in metabolizing exogenous substances and endogenous hormones, and its expression is recently identified at not only the liver but also several organs with respect to the pancreas, lung and ovary. Although the expression of CYP1A2 can be also affected by several factors, understanding for the changed pattern of the ovarian CYP1A2 expression upon stress induction is still limited. Therefore, CYP1A2 expression in the ovaries from immobilization stress-induced rats were assessed in the present study. The stress-induced rats in the present study exhibited the physiological changes in terms of increased stress hormone level and decreased body weight gains. Under immunohistological observation, the ovarian CYP1A2 expression in both control and the stressed ovary was localized in the antral to pre-ovulatory follicles. However, its expression level was significantly (p < 0.01) higher in the stress-induced group than control group. In addition, stress-induced group presented more abundant CYP1A2-positive follicles (%) than control group. Since expression of the ovarian CYP1A2 was highly related with follicle atresia, increased expression of CYP1A2 in the stressed ovary might be associated with changes of the ovarian follicular dynamics due to stress induction. We hope that these findings have important implications in the fields of the reproductive biology.

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

Effect of low frequency oscillations during milking on udder temperature and welfare of dairy cows

  • Antanas Sederevicius;Vaidas Oberauskas;Rasa Zelvyte;Judita Zymantiene;Kristina Musayeva;Juozas Zemaitis;Vytautas Jurenas;Algimantas Bubulis;Joris Vezys
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.244-257
    • /
    • 2023
  • The study aimed to investigate the effect of low-frequency oscillations on the cow udder, milk parameters, and animal welfare during the automated milking process. The study's objective was to investigate the impact of low-frequency oscillations on the udder and teats' blood circulation by creating a mathematical model of mammary glands, using milkers and vibrators to analyze the theoretical dynamics of oscillations. The mechanical vibration device developed and tested in the study was mounted on a DeLaval automatic milking machine, which excited the udder with low-frequency oscillations, allowing the analysis of input parameters (temperature, oscillation amplitude) and using feedback data, changing the device parameters such as vibration frequency and duration. The experimental study was performed using an artificial cow's udder model with and without milk and a DeLaval milking machine, exciting the model with low-frequency harmonic oscillations (frequency range 15-60 Hz, vibration amplitude 2-5 mm). The investigation in vitro applying low-frequency of the vibration system's first-order frequencies in lateral (X) direction showed the low-frequency values of 23.5-26.5 Hz (effective frequency of the simulation analysis was 25.0 Hz). The tested values of the first-order frequency of the vibration system in the vertical (Y) direction were 37.5-41.5 Hz (effective frequency of the simulation analysis was 41.0 Hz), with higher amplitude and lower vibration damping. During in vivo experiments, while milking, the vibrator was inducing mechanical milking-similar vibrations in the udder. The vibrations were spreading to the entire udder and caused physiotherapeutic effects such as activated physiological processes and increased udder base temperature by 0.57℃ (p < 0.001), thus increasing blood flow in the udder. Used low-frequency vibrations did not significantly affect milk yield, milk composition, milk quality indicators, and animal welfare. The investigation results showed that applying low-frequency vibration on a cow udder during automatic milking is a non-invasive, efficient method to stimulate blood circulation in the udder and improve teat and udder health without changing milk quality and production. Further studies will be carried out in the following research phase on clinical and subclinical mastitis cows.

Exploring the Role of Preference Heterogeneity and Causal Attribution in Online Ratings Dynamics

  • Chu, Wujin;Roh, Minjung
    • Asia Marketing Journal
    • /
    • v.15 no.4
    • /
    • pp.61-101
    • /
    • 2014
  • This study investigates when and how disagreements in online customer ratings prompt more favorable product evaluations. Among the three metrics of volume, valence, and variance that feature in the research on online customer ratings, volume and valence have exhibited consistently positive patterns in their effects on product sales or evaluations (e.g., Dellarocas, Zhang, and Awad 2007; Liu 2006). Ratings variance, or the degree of disagreement among reviewers, however, has shown rather mixed results, with some studies reporting positive effects on product sales (e.g., Clement, Proppe, and Rott 2007) while others finding negative effects on product evaluations (e.g., Zhu and Zhang 2010). This study aims to resolve these contradictory findings by introducing preference heterogeneity as a possible moderator and causal attribution as a mediator to account for the moderating effect. The main proposition of this study is that when preference heterogeneity is perceived as high, a disagreement in ratings is attributed more to reviewers' different preferences than to unreliable product quality, which in turn prompts better quality evaluations of a product. Because disagreements mostly result from differences in reviewers' tastes or the low reliability of a product's quality (Mizerski 1982; Sen and Lerman 2007), a greater level of attribution to reviewer tastes can mitigate the negative effect of disagreement on product evaluations. Specifically, if consumers infer that reviewers' heterogeneous preferences result in subjectively different experiences and thereby highly diverse ratings, they would not disregard the overall quality of a product. However, if consumers infer that reviewers' preferences are quite homogeneous and thus the low reliability of the product quality contributes to such disagreements, they would discount the overall product quality. Therefore, consumers would respond more favorably to disagreements in ratings when preference heterogeneity is perceived as high rather than low. This study furthermore extends this prediction to the various levels of average ratings. The heuristicsystematic processing model so far indicates that the engagement in effortful systematic processing occurs only when sufficient motivation is present (Hann et al. 2007; Maheswaran and Chaiken 1991; Martin and Davies 1998). One of the key factors affecting this motivation is the aspiration level of the decision maker. Only under conditions that meet or exceed his aspiration level does he tend to engage in systematic processing (Patzelt and Shepherd 2008; Stephanous and Sage 1987). Therefore, systematic causal attribution processing regarding ratings variance is likely more activated when the average rating is high enough to meet the aspiration level than when it is too low to meet it. Considering that the interaction between ratings variance and preference heterogeneity occurs through the mediation of causal attribution, this greater activation of causal attribution in high versus low average ratings would lead to more pronounced interaction between ratings variance and preference heterogeneity in high versus low average ratings. Overall, this study proposes that the interaction between ratings variance and preference heterogeneity is more pronounced when the average rating is high as compared to when it is low. Two laboratory studies lend support to these predictions. Study 1 reveals that participants exposed to a high-preference heterogeneity book title (i.e., a novel) attributed disagreement in ratings more to reviewers' tastes, and thereby more favorably evaluated books with such ratings, compared to those exposed to a low-preference heterogeneity title (i.e., an English listening practice book). Study 2 then extended these findings to the various levels of average ratings and found that this greater preference for disagreement options under high preference heterogeneity is more pronounced when the average rating is high compared to when it is low. This study makes an important theoretical contribution to the online customer ratings literature by showing that preference heterogeneity serves as a key moderator of the effect of ratings variance on product evaluations and that causal attribution acts as a mediator of this moderation effect. A more comprehensive picture of the interplay among ratings variance, preference heterogeneity, and average ratings is also provided by revealing that the interaction between ratings variance and preference heterogeneity varies as a function of the average rating. In addition, this work provides some significant managerial implications for marketers in terms of how they manage word of mouth. Because a lack of consensus creates some uncertainty and anxiety over the given information, consumers experience a psychological burden regarding their choice of a product when ratings show disagreement. The results of this study offer a way to address this problem. By explicitly clarifying that there are many more differences in tastes among reviewers than expected, marketers can allow consumers to speculate that differing tastes of reviewers rather than an uncertain or poor product quality contribute to such conflicts in ratings. Thus, when fierce disagreements are observed in the WOM arena, marketers are advised to communicate to consumers that diverse, rather than uniform, tastes govern reviews and evaluations of products.

  • PDF

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF