• Title/Summary/Keyword: Activated carbon adsorption

Search Result 961, Processing Time 0.029 seconds

A Close Examination of Unstability and a Quality Improvement using Anhydrous $Na_2CO_3$ in Waste Plastic's Thermal Pyrolysis Oil (폐플라스틱 열분해 재생유의 불안정한 요인 규명과 무수탄산나트륨으로 품질 향상)

  • Seo, Young-Hwa;Ko, Kwang-Youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1371-1380
    • /
    • 2007
  • Study on the instability of waste plastic's thermal pyrolysis oil was carried out for the purpose of improving its quality. The reaction of pyrolysis oil with ozone changed double bonds into aldehydes and ketone, estimated that HDPE pyrolysis oil contained $\sim45$ wt% 1-alkene type olefins, and PP pyrolysis oil did $\sim73$ wt% olefins, which consisted of $\sim47$ wt% secondary and $\sim20$ wt% primary alkenes. The dark brown color and odor of pyrolysis oil were improved by eliminating double bonds, indicated that they were directly related to unsaturated hydrocarbons. Container test showed that metal can affected oil quality worse than the brown glass bottle. Antioxidant added into pyrolysis oil was consumed up to 90% within $2\sim3$ days and the wt. composition of unsaturated hydrocarbons in pyrolysis oil was not changed within 50 days, inferring that instability of pyrolysis oil due to unsaturated bonds can be stabilized by antioxidants. Adsorption test on silica gel, activated carbon and alumina to remove precipitates in oil produced a good result, but not enough to remove moisture. However, cheap anhydrous sodium carbonate showed the best removal efficiency of moisture as well as precipitates in oil. Therefore the pyrolysis oil quality improvement was accomplished by applying anhydrous $Na_2CO_3$ into the production plant.

Melamine Concentration in Han River Basin and the in GAC Column Breakthrough Curve Model (한강수계 내 Melamine 농도검출과 GAC처리에서의 파과모델링)

  • Lee, Sang-Jung;Lee, Jai-Yeop;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.717-722
    • /
    • 2011
  • Currently, melamine is being used variously in our lives such as resins, flame retardants, adhesive, laminate etc. And understandably sewer of stream of wastewater containing Melamine has also increased. GHS (Globally Harmonized System of Classification and Labelling of Chemicals) of EU safety guidelines says that it can cause cancer. Still, study on toxicity of Melamine is going on. In this research, melamine contamination level of the Han River and River Basin was analyzed by HPLC/UV. And the experiments of GAC adsorption were conducted and the model was studied. We collected the 3 same samples at the suburbs of Paldang Dam located in the relative upstream in Han River and Ttukseom amusement park, the downstream region and collected samples equally at the Hongreung stream, Wangsuk stream, Cheonggye stream among streams flowing into Han River and then measured Melamine concentration after purification. As a result, melamine was not detected at the suburbs of Paldang Dam and it was detected at Ttukseom amusement park, the downstream of it, in the concentration of $0.312{\mu}g/L$. The Wangsuk stream with $0.578{\mu}g/L$ highest Cheonggye stream and Hongreung stream was detected with each $0.197{\mu}g/L$ and $0.325{\mu}g/L$. Although the concentration was low in general, melamine detection could be checked at most point. In 1970, the world capacity of Melamine was estimated at 200,000 ton, with current production estimated to be 1,400,000 ton. Melamine of Han River and rivers flowing into Han River is present at low concentration but pollution will increase in the future due to increase of use. Depending on the size of activated carbon in the experiment were slightly different. But the breakthrough model is almost identical.

A Study on Nitrification of Raw Waters Containing Linear Alkyl Sulfate in Biological Activated Carbon (생물활성탄을 이용한 Linear Alkyl Sulfate함유 원수에서의 질산화에 관한 연구)

  • Park, Seong Sun;Chang, Ji Soo;Yu, Myong Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.3
    • /
    • pp.116-126
    • /
    • 1995
  • The purpose of this study was to investigate the removal of ammonium nitrogen by biological nitrification in raw water containing LAS using BAC. At batch teats, LAS removal by ozone followed the first order reaction, and the rate constants(k) by ozone dose 1, 3mg/min.L were $0.040min^{-1}$, $0.062min^{-1}$ respectively. Therefore, the more ozone was dosed, the higher LAS was removed The reaction between ozone and ammonium nitrogen also followed the first order, and rate constants(k) at pH7,8 and 9 were $8.9{\times}10^{-4}min-1$, $3.8{\times}10^{-3}min^{-1}$, and $2.9{\times}10^{-2}min^{-1}$ respectively at ozone dose of 3mg/min.L . Therefore, ammonium nitrogen was little removed by ozone under neutral pH of 7. The continuous flow apparatus had four sets composed of a ozone contacter and a GAC column. Through continuous filtration test for 50days, the following conclusions were derived; (1) LAS was removed 23%, 30% respectively by ozone dose 1, 3mg/L, and was not detected in all column effluents during the period of experiment. Therefore, it appeared that adsorption capacities of each column still remained. (2) Ammonium nitrogen concentration after ozone contact varied little in raw Water because pH of raw water was from 6 to 7, and was transfered to nitrite and nitrate within GAC columns as the result of staged nitrification. After 30days, nitrite was not detected in all column effluents due to biological equilbrium between nitro semonas and nitrobacter Average removals of ammonium nitrogen in each column after the lapse of 30days were the following; ${\cdot}$ column A (ozone dose 3mg/L, EBCT 9.5min): about 100% ${\cdot}$ column B (ozone dose 1mg/L, EBCT 9.5min): 91% ${\cdot}$ column C (ozone dose 3mg/L, EBCT 14.2min): about 100% ${\cdot}$ column D (ozone dose 0mg/L, EBCT 9.5min): 53% Though column A and C reached nitrification of about 100%, column C (longer EBCT than column A) was more stable than column A. (3) After backwash, nitrification reached steady state within 5 to 8 hours. Therefore, nitrification was not greatly affected by backwash. (4) According to the nitrification capacity in depth of column A, C, where 100% nitrification occured. LAS was removed within 20cm, while ammonium nitrogen required more depth to be removed by nitrification.

  • PDF

A Study on Pyrolytic and Anatomical Characteristics of Korean Softwood and Hardwood (국산 침·활엽수재의 열분해 및 해부학적 특성에 관한 연구)

  • Kim, Dae-Young;Kang, Sung-Ho;Jeong, Heon-young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.31-42
    • /
    • 2007
  • To investigate the pyrolytic and anatomical characteristics of Korean softwood, Pinus densi-flora, Pinus rigida and Larix leptolepis, and hardwood, Acer palntatum, Fraxinus rhynchophylla and Quercus variabilis, chemical components analysis, TG-DTA (Thermogravimetric Analysis & Differential Thermal Analysis), MBA (Methylene Blue Adsorption) test and SEM observation were carried out. For TG-DTA, samples were carbonized up to $800^{\circ}C$ at the heating rate of $10^{\circ}C$/min under $N_2$ flows 1 l/min using thermogravimetric analyzer. Chemical component analysis of all samples resulted in typical contents of major wood component. In TG-DTA results, softwood showed higher char yield than hardwood, and lignin displayed the highest char yield among the major wood components. All samples showed typical TGA, DTG and DTA curves for wood pyrolysis except a few differences between softwood and hardwood. Content of lignin influenced its pyrolysis characteristics, while molecular structure of lignin affected not only the weight loss but also the yield of char. In MBA test results, MBA of softwoods was higher than that of hardwoods. Char of Pinus densiflora showed the highest MBA, but its degree was lower than activated carbon or fine charcoal about 23 and 4 times, respectively. SEM observation showed carbonization process preserves wood structure and retain the micro-structure of wood fibers.

Application of CFD Program for Analyzing the Hydrodynamic Characteristics of Baffled PAC Contactor (격벽식 분말활성탄 접촉조의 흐름해석을 위한 전산유체역학 프로그램의 적용)

  • Ahn, Chang-Jin;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.221-229
    • /
    • 2002
  • For the efficient design of baffled Powdered activated carbon(PAC) contractor, which has been widely used in water treatment plant(WTP) against the algae-related odor problems, a CFD(computational fluid dynamics) program was applied. In order to verify the performance of FLOW-3D program, the previously reported results of tracer tests from a pilot-scale PAC contractor(working volume of 288 liters) were compared to those from FLOW 3D. The results of FLOW-3D simulation were very similar to those from tracer tests conducted with the Pilot-scale PAC contactor. On the other hand, the hydrodynamic characteristics of baffled contractor in the P-WTP were simulated by using FLOW-3D. Simulation results on the distribution of PAC particles showed that there are some stagnant parts in the back side of baffles in which PAC Particles are not present. These stagnant parts might decrease the adsorption capacity of PAC particles. When the baffles were changed to maze-type intra-basin baffling, PAC particles were evenly distributed and the amount of stagnant parts reduced. In conclusion, it is anticipated that FLOW-3D simulation could be a viab1e tool for analyzing the hydrodynamic characteristics of structures used in drinking water treatment plant.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

Fouling Mitigation for Pressurized Membrane of Side-Stream MBR Process at Abnormal Operation Condition (가압식 분리막을 이용한 Side-Stream MBR 공정의 비정상 운전조건에서 막 오염 저감)

  • Ko, Byeong-Gon;Na, Ji-Hun;Nam, Duck-Hyun;Kang, Ki-Hoon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.323-328
    • /
    • 2016
  • Pressurized membrane used for side-stream MBR process requires fouling control strategy both for normal and abnormal operation conditions for stable operation of the facilities. In this study, $85m^3/day$ of pilot-scale side-stream MBR process was constructed for the evaluation of fouling mitigation by air bubble injection into the membrane module. In addition, fouling phenomena at abnormal operation conditions of low influent and/or loading rate were also investigated. Injection of air bubble was found to be effective in delaying transmembrane pressure (TMP) increase mainly due to scouring effect on the membrane surface, resulting in expanded filtration cycle at a high flux of $40L/m^2{\cdot}h$ (LMH). At abnormal operation condition, injection of PACl (53 mg/L as Al) into the bioreactor showed 19% reduction of TMP increase. However, inhibition of nitrifying bacteria by continuous PACl injection was observed from batch experiments. In contrast, injection of powdered activated carbon (PAC, 0.6 g/L) was able to maintain the initial TMP of $0.2kg/cm^2$ for 5 days at the abnormal conditions. It may have been caused from the adsorption of extracellular polymeric substances (EPS), which was known to be excessively released during growth inhibition condition and act as the major foulants in MBR operations.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Improving Corsican pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology and germination

  • Wtpsk, Senarath;Shaw, D.S.;Lee, Kui-Jae;Lee, Wang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.04a
    • /
    • pp.61-62
    • /
    • 2003
  • Clonal propagation of high-value forest trees through somatic embryogenesis (SE) has the potential to rapidly capture the benefits of breeding or genetic engineering programs and to improve raw material uniformity and quality. A major barrier to the commercialization of this technology is the low quality of the resulting embryos. Several factors limit commercialization of SE for Corsican pine, including low initiation rates, low culture survival, culture decline causing low or no embryo production, and inability of somatic embryos to fully mature, resulting in low germination and reduced vigour of somatic seedlings. The objective was to develop a Corsican pine maturation medium that would produce cotyledonary embryos capable of germination. Treatments were arranged in a completely randomized design. Data were analyzed by analysis of variance, and significant differences between treatments determined by multiple range test at P=0.05. Corsican pine (Pinus nigra var. maritima) cultures were initiated on modified !P6 medium. Modifications of the same media were used for culture multiplication and maintenance. Embryogenic cultures were maintained on the same medium semi solidified with 2.5 g/l Gelrite. A maturation medium, capable of promoting the development of Corsican pine somatic embryos that can germinate, is a combination of iP6 modified salts, 2% maltose, 13% polyethylene glycol (PEG), 5 mg!l abscisic acid (ABA), and 2.5 g/l Gelrite. After initiation and once enough tissue developed they were grown in liquid medium. Embryogenic cell suspensions were established by adding 0.951.05 g of 10- to 14-day-old semisolid-grown embryogenic tissue to 9 ml of liquid maintenance media in a 250ml Erlenmeyer flask. Cultures were then incubated in the dark at 2022$^{\circ}$C and rotated at 120 rpm. After 2.53 months on maturation medium, somatic embryos were selected that exhibited normal embryo shape. Ten embryos were placed horizontally on 20 ml of either germination medium ($\frac{2}{1}$strength Murashige and Skoog (1962) salts with 2.5 g/l activated charcoal) or same medium with copper sulphate adjusted to 0.25 mg/1 to compensate for copper adsorption by activated carbon. 2% and 4% maltose was substituted by 7.5% and 13% PEG respectively to improve the yield of the embryos. Substitution of' maltose with PEG was clearly beneficial to embryo development. When 2% of the maltose was replaced with 7.5% PEG, many embryos developed to large bullet-shaped embryos. At latter stages of development most embryos callused and stopped development. A few short, barrel-shaped cotyledonary embryos formed that were covered by callus on the sides and base. When 4% of the maltose was removed and substituted with 13% PEG, the embryos developed further, emerging from the callus and increasing yield slightly. Microscopic examination of the cultures showed differing morphologies, varying from mostly single cells or clumps to well-formed somatic embryos that resembled early zygotic embryos only liquid cultures with organized early-stag. A procedure for converting and acclimating germinants to growth in soil and greenhouse conditions is also tested. Seedling conversion and growth were highly related to the quality of the germinant at the time of planting. Germinants with larger shoots, longer, straighter hypocotyls and longer roots performed best. When mature zygotic embryos germinate the root emerges, before or coincident with the shoot. In contrast, somatic embryos germinate in reverse sequence, with the cotyledons greening first, then shoot emergence and then, much later, if at all, the appearance of the root. Somatic seedlings, produced from the maturation medium, showed 100% survival when planted in a field setting. Somatic seedlings showed normal yearly growth relative to standard seedlings from natural seed.

  • PDF

Study on characteristics of specific hazardous substances in the industrial wastewater effluent (사업장 방류수 중 특정수질유해물질 배출 특성 연구)

  • Kim, Seungho;Choi, Youngseop;Kim, Yunhee;Kim, Jongmin;Chang, Gilsik;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.114-125
    • /
    • 2016
  • In this study, 165 wastewater discharge facilities in 10 business types were investigated with regard to 24 specific hazardous substances that included heavy metals, VOCs, CN, and phenol in the Gwangju city. Cu in the range from from 0.008 to 35.420 mg/L was detected in all business types and the detection rate was 46.8 %. Other heavy metals, such as Cd, As, Hg, Pb, and Cr+6 were detected as well. However, their detection rates ranged between 0.6 and 1.8 %. CN and phenol were detected in one and five facilities, respectively. 12 species of VOCs were detected: chloroform 80.6 % (0.42 to 81.60 μg/L), benzene 16.4 % (1.49 to 3.31 μg/L), trichloroethylene 11.5 % (1.78 to 6.02 μg/L), 1,1-dichloroethylene 10.3 % (1.23 to 5.89 μg/L), and dichloromethane 8.5 % (0.28 to 968.86 μg/L) in the detection rate order. The concentration of VOCs was detected in trace amounts, except for dichloromethane that exceeded the effluent quality standard in three business types, namely, metal manufacturing, food industry, and car washing facility. Chloroform was detected in all business types, where 24.88 μg/L were detected in the laundry business and 53.41 μg/L in the water supply business; the mean concentration of chloroform in these two business types was higher than elsewhere. Therefore, for the disposal of non-degradable specific hazardous substances in industrial wastewater, it is necessary to introduce physical and chemical processes, such as activated carbon adsorption, fenton oxidation, ozone treatment, as well as photocatalyst and the UV radiation.