• Title/Summary/Keyword: Activated Carbon Fiber (ACF)

Search Result 114, Processing Time 0.022 seconds

Adsorption Characteristics of a Respirator Cartridge for Organic Vapor Packed with Activated Carbon Fiber (활성탄소섬유가 충전된 유기가스용 방독마스크 정화통의 흡착특성)

  • Shin, Chang-Sub;Kim, Ki-Hwan;Kang, Young-Goo
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The adsorption characteristics of a respirator cartridge is affected by the kind of adsorbent, concentration of organic vapor, humidity and packing density of cartridge. In this study, activated carbon fiber(ACF) instead of activated carbon is used as a adsorbent of cartridges for the removement of organic vapor and the adsorption characteristics were examined. ACF made of cellulose showes high efficiency for the removal of carbon tetrachloride and the adsorption capacity was 0.569g/g ACF at 450 ppm. The relative humidity dose not affected to the adsorbed amount and Langmuir Isotherm was more adequate than Freundlich Isotherm for this adsorption phenomena.

  • PDF

Electrosorption of Uranium Ions in Liquid Waste

  • Lee, Hye-Young;Jung, Chong-Hun;Oh, Won-Zin;Park, Jin-Ho;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 2003
  • A study on the electrosorption of uranium ions onto a porous activated carbon fiber (ACF) was performed to treat uraniumcontaining lagoon sludge. The result of the continuous flow-through cell electrosorption experiments showed that the applied negative potential increased the adsorption kinetics and capacity in comparison to the open-circuit potential (OCP) adsorption for uranium ions. Effective U(VI) removal is accomplished when a negative potential is applied to the activated carbon fiber (ACF) electrode. For a feed concentration of 100 mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1 mg/L. The selective removal of uranium ions from electrolyte was possible by the electrosorption process.

  • PDF

Surface Modification by Heat-treatment of Propellant Waste Impregnated ACF

  • Yoon, Keun-Sig;Pyo, Dae-Ung;Lee, Young-Seak;Ryu, Seung-Kon;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.131-136
    • /
    • 2010
  • Propellant waste was impregnated on the surface of activated carbon fiber and heat-treated at different temperature to introduce newly developed functional groups on the ACF surface. Functional groups of nitrogen and oxygen such as pyridine, pyridone, pyrrol, lacton and carboxyl were newly introduced on the surface of modified activated carbon fiber. The porosity, specific surface area, and morphology of those modified ACFs were changed as increasing the heat-treated temperature from 200 to $500^{\circ}C$. The optimum heat-treatment temperature was suggested to $500^{\circ}C$, because lower temperature given rise to the decrease of specific surface area and higher temperature resulted in the decrease of weight loss. Propellant waste can be used as an useful surface modifier to porous carbons.

Adsorption Characteristics of Organic Compounds on the Activated Carbon Fiber(II) (섬유상활성탄(纖維狀活性炭)에 의한 유기화합물(有機化合物)의 흡착특성(吸着特性)(II))

  • Sohn, Jin-Eon;Lee, Si-Won
    • Elastomers and Composites
    • /
    • v.24 no.2
    • /
    • pp.105-109
    • /
    • 1989
  • Liquid phase adsorption of organic compounds solution on the activated carbon fiber was measured by chromatographic method in a packed column. Adsorption equilibrium constant Ka of dextrose solution was found to be $72.5cm^3/g$ on ACF without bacteria growth, while in the bacterial ACF packed column Ka was $87.9cm^3/g$. It is suggested that for biological ACF there is a large contribution of bacterial activity to the adsorption equilibrium constant. Axial dispersion coefficient Ez was determined to be in proportional to flow rate and Pe=dpu/Ez independent or existence or bacteria.

  • PDF

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

The Study on the Rapid Screening of Schedule Chemicals in Aqueous Solution Using SPE-ACF (수용액에서 SPE-ACF를 이용한 특정화학물질의 신속 스크리닝 기법 연구)

  • Park, Hoon;Jung, Chang-Hee;Lee, Yong-Han;Hong, Dea-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.239-248
    • /
    • 2008
  • study of the solid phase extraction (SPE) technique using activated carbon fiber (ACF) as a sorbent was carried out on the schedule chemicals in water. 14 different schedule chemicals, which are the hydrolysis products and simulants of chemical agents such as alkylphosphonate, thiodiglycol etc. were selected for the study. Pyridine was used as a promoter to increase the derivatization efficiency, especially to improve silylation of 3-quinuclidinol. To improve the recovery efficiency of amines in the water solution, 1 mL of 5% Et3N/MeOH was introduced into SPE-ACF before the water sample loading. Throughout this study, the optimum condition was established to detect rapidly above chemicals in water.

Removal of Trihalomethanes from Tap Water using Activated Carbon Fiber (활성탄소섬유를 사용한 수돗물 내 트리할로메탄의 제거)

  • Yoo, Hwa In;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Activated carbon fiber (ACF) was used to remove four kinds of trihalomethanes(THMs) from tap water which were remained as by-products during the chlorination of water. Adsorption capacity was investigated as a function of THMs concentration and solution temperature, and adsorption mechanism was studied in relating to the surface characteristics of ACF. All the four kinds of THMs were rapidly adsorbed on the surface of ACF by physical adsorption due to the enormous surface micropores and chemical adsorption due to the hydrogen bonds, showing a Langmuir type adsorption isotherm. Langmuir type is especially profitable for the adsorption of low level adsorptives. ACF was very effective for the removal of THMs from tap water because the THMs concentration is below $30{\mu}g/L$ in tap water. The adsorption amount of THMs on ACF increased in order of the number of brom atom; chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The adsorption capacity increased as increasing the number of brom atom due to the decrease of polarity in solution. The adsorption capacity of THMs on ACF can be enhanced by proper surface treatment of ACF.

Preparation and photocatalytic activity of ACF/$TiO_2$ composites by using titanium n-butoxide and acid modified activated carbon fiber

  • Oh, Won-Chun;Kwon, Ho-Joug;Chen, Ming-Liang;Zhang, Feng-Jun;Ko, Weon-Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.144-151
    • /
    • 2009
  • Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using $TiO_2$ coated on various acid modified activated carbon fiber (ACF). The ACFs/$TiO_2$ composites were prepared from titanium n-butoxide (TNB) as titanium precursor and various acid modified ACFs. The prepared samples are heat treated at 973 K. Then the ACF/$TiO_2$ composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). Moreover, photocatalytic degradation of MB by the ACF/$TiO_2$ composites was determined under UV irradiation. The results shows that the photocatalytic activity of ACF/$TiO_2$ composites ($AT1{\sim}AT4$) prepared with TNB and various acid modified ACF was much better than that of ACF/$TiO_2$ composite (AT) prepared with TNB and non-acid modified ACF, and the effects improved with order of sample AT3 > AT4 > AT1 > AT2.

Inactivation and Filtration of Bioaerosols Using Carbon Fiber Ionizer Assisted Activated Carbon Fiber Filter (탄소섬유 이오나이저를 적용한 활성탄소섬유 필터의 바이오에어로졸 항균 및 집진 성능평가)

  • Kim, Doo Young;Park, Jae Hong;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.185-192
    • /
    • 2010
  • This paper reports that the installation of a carbon fiber ionizer in front of an activated carbon fiber(ACF) filter enhanced the antibacterial efficiency. In addition, the effect of the ionizer on the filtration of bioaerosols is reported. Negative air ions from the ionizer were used as antibacterial agent. The test bacteria(Escherichia coli) were aerosolized using an atomizer and were deposited on the ACF filter media for 10 minutes. E. coli deposited on the filter were exposed to negative air ions for 0, 1, 5 and 10 minutes. Then they were separated from the ACF filter by shaking incubation with nutrient broth for 4 hours. The separated E. coli were spread on nutrient agar plates and incubated at $37^{\circ}C$ for 1~3 days. The antibacterial efficiency of E. coli was measured using a colony counting method. The antibacterial efficiencies of E. coli exposed to negative air ions for 1, 5 and 10 minutes were 14%, 48% and 71%, respectively. The filtration efficiency was evaluated by measuring the number concentration of bioaerosols at the upstream and downstream of the filter media. The increase of filtration efficiency by air ions was 14%, that is similar to the 17% filtration efficiency by none air ions. The ozone concentration was below the detection limit (under 0.01ppm) when the carbon fiber ionizers were on.

Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Aqueous Electrolytes (페놀계 활성탄소섬유 전극과 수용성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성)

  • Kim, Jong Huy;An, Kay Hyeok;Shin, Kyung Hee;Ryoo, Min Woong;Kim, Dong Kuk
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.814-821
    • /
    • 1999
  • The specific capacitance characteristics of the electric double layer capacitors(ELDC) which were made of phenol based activated carbon fiber(ACF) electrodes. Also the effect of aqueous electrolytes on the cell performance has been investigated with respect to different specific surface areas of electrodes and different kinds of aqueous electrolytes. It has been shown that larger surface area and pore size, higher conductivity of electrodes, and higher ion mobility of electrolytes have better specific capacitances. It has been found that heat treatment at $1200^{\circ}C$ and $CO_2$ post-activation at $900^{\circ}C$ of the electrode are effective to improve the specific capacitance over 145F/g and 165F/g, respectively. The EDLC showed high efficiency and long cycle life over 30000 cycles.

  • PDF