• Title/Summary/Keyword: Activated Carbon(AC)

Search Result 212, Processing Time 0.032 seconds

Detection of Perchlorate in Nakdong River and Removal Characteristics of Perchlorate by Granular Activated Carbon Process (낙동강 수계에서의 Perchlorate 검출 및 활성탄 공정에 의한 제거특성)

  • Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.438-443
    • /
    • 2007
  • This study was done to investigate perchlorate contamination in Nakdong river. The perchlorate was detected in Nakdong river and ranged from ND to $82.1{\mu}g/L$. The highest concentration was observed in Wheguan. The perchlorate concentration was decreased with the down stream of Nakdong river. Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of perchlorate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of coal, coconut and wood based AC as 2,300 bed volumn(BV), 719 BV and 288 BV respectively. Adsorption capacity(X/M) of real, coconut and wood based AC was observed. The experimental results of adsorption capacity showed that coal based AC was highest$(768.2{\mu}g/g)$, coconut based AC was intermediate$(299{\mu}g/g)$ and wood based AC was lowest$(99.2{\mu}g/g)$. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.71 g/day, 2.16 g/day and 3.45 g/day respectively. The constant characteristic of the system, k of coal, coconut and wood based ACs were found to be 307.2, 102.5 and 94.2, respectively.

Adsorption of Carbon Dioxide using Pelletized AC with Amine impregnation (아민 함침 입자상 활성탄의 특성 분석 및 이산화탄소 흡착능 평가연구)

  • Lim, Yun-Hui;Jo, Young-Min;Kim, Seung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • This study attempts to capture the low level carbon dioxide from indoor spaces using a granular activated carbon (WSC-470) which was modified with primary monoethanolamine. Adsorption capacity of the prepared adsorbents was evaluated for pure $CO_2$ flow and 3000 ppm as a function of MEA concentration and solvents such as distilled water, ethanol and methanol. The AC based adsorbents then were characterized in terms of pore structure by BET and chemical functionalities by XPS. While high concentration of MEA reduced specific surface area, porosity and micro pores, nitrogen content which can enhance the surface basicity was increased. The maximum adsorption capacity decreased comparing to the initial AC pellets, whilst the potential of selective adsorption amount at low level $CO_2$ was increased at 45% (0.73 mmol/g).

Supported Iron Nanoparticles on Activated Carbon, Polyethylene and Silica for Nitrate Reduction

  • Cho, Mi-Sun;Kim, E-Wha;Lee, Kyoung-Hee;Ahn, Sam-Young
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • The use of support materials on the nanoparticle synthesis and applications has advantages in many aspects; resisting the aggregation and gelation of nanoparticles, providing more active sites by dispersing over the supports, and facilitating a filtering process. In order to elucidate the influence of the supports on the nitrate reduction reactivity, the supported iron nanoparticles were prepared by borohydride reduction of an aqueous iron salt in the presence of supports such as activated carbon, silica and polyethylene. The reactivity for nitrate reduction decreased in the order of unsupported Fe(0) > activated carbon(AC) supported Fe(0) > polyethylene(PE) supported Fe(0) ${\ge}$ silica supported Fe(0). Rate constants decrease with increasing initial nitrate concentration implying that the reaction is limited by the surface reaction kinetics.

Physical Properties of Activated Carbon with Coal Blend Ratios and Manufacturing Conditions (석탄배합비율과 제조공정조건에 따른 활성탄의 물성변화)

  • Kim, Sang Cheol;Park, Kyung Ai;Lee, Seung Bum;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.835-841
    • /
    • 1998
  • This study was devoted to the manufacturing process of activated carbon(AC) using and anthracite and bituminous coals which were regarded as appropriate for AC manufacturing, and the physcial properties a AC prepared with coal blends were characterized by the ultimate and proximate analysis. Generally, as the fraction of antheracite in AC from anthracite and bituminous coal blends was increased, AC yield was increased whereas iodine value($I_2$) was decreased. Being not related to mixing ratio of coal blends, the apparent density of AC remained constant. Pore development and iodine value of AC based on coal blends(Fushun and Dandong, 75:25 wt. %) were examined, varing carbonization and steam activation conditions. These results showed that the average pore diameter of AC was below $20{\AA}$ in the activation temperature range of 850 to $900^{\circ}C$ and the iodine value was above $1000m^2/g$. When the adsorption capacity of manufactured AC was compared with commercial AC, it is found that the AC from coal blends was comparable to the commercial AC. Therefore, it was confirmed that the characteristics of manufactured AC were changed with manufacturing conditions and the ratios and types of coal blends.

  • PDF

The Adsorption Removal Characteristics of Trace Organic By-Products in Disinfection of Drinking Water by Biological Activated Carbon(BAC) (음용수 소독 미량 유기오염물질 생성에 대한 생물활성탄(Biological Activated Carbon)의 흡착제거 특성)

  • Ok, Chi-Sang;Kim, Jeong-A;Bae, Gi-Cheol
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1992
  • In order to research the adsorption removal characteristics of trace organic by-products in disinfection of drinking water by biological activated carbon(BAC), water samples disinfect- ted with $Cl_2$, $O_3$ and $ClO_2$ after treatment by fluidized-bed system with water added with humic acid(10mg/L) were investigated the formation and the removal of trihalomethanes (THMs), and the trace organic by-products by gas chromatography(GC) II gas chromatography/mass selective detector(GC/MSD). Control was used by activated carbon(AC) and water added with humic acid(HA). The results were summarized as follow : The THMs removal effect of BAC by chlorination was in lower 90 % than that of control(HA), the sorts of oxidants formed by $Cl_2$ , $O_3$ and $ClO_2$ were that $O_3$ was very fewer than $Cl_2$ or $ClO_2$, and that $ClO_2$ was fewer than $Cl_2$. The trace organic by-products were esters and phthalates etc. Based on results above, it is concluded that BAC was appeared the more desirable adsorbtion-degradation removal characteristics than that of AC.

  • PDF

Photocatalytic Degradation of Methylene Blue using $TiO_2$ Supported on Activated Carbon (TiO$_2$가 담지된 활성탄을 이용한 Methylene Blue의 광분해)

  • Lee, Jong-Dae;Lee, Tae-Jun;Cho, Kyong-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • The photocatalytic degradation of methylene blue(MB) was investigated using $TiO_2$ as photocatalyst and UV radiation. $TiO_2$ supported with activated carbon(AC) was prepared by SOL-GEL method and depended on several parameters such as the mass ratio of $TiO_2/AC$, pH and experimental time. The presence of the anatase and rutile crystal phase was determined by XRD analyses of the prepared $TiO_2$. The degradation of MB with $TiO_2/AC$ was about 20% higher than that of AC alone. A variation of photodegradation was negligible under UV radiation conditions ( ${\geq}$ 40W). It was experimentally showed that the photodegradation rate was increased with increasing the amount of photocatalyst. The optimal catalyst was prepared by impregmation of $5wt%-TiO_2$ with AC and was calcined at $300^{\circ}C$, and showed about 99% removal efficiency for 3hrs.

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.

Adsorption Dynamics of Activated Carbon and Carbon Molecular Sieve Beds for Ethylene Recovery (배가스로부터에틸렌 회수를 위한 활성탄과 CMS 흡착탑의 흡착거동 특성)

  • Yoon, Ki-Yong;Jun, Phillip;Woo, En-Ji;Ahn, Hyungwoong;Lee, Chang-Ha
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.527-534
    • /
    • 2012
  • The adsorption dynamics of activated carbon (AC) and carbon molecular sieve (CMS) beds were studied to recover ethylene from FCC fuel gas. In this study, the FCC fuel gas used consisted of six-component mixture ($CH_4/C_2H_4/C_2H_6/C_3H_6/N_2/H_2$,32:15:14:2:12:25 vol.%). And the breakthrough experiments of adsorption and desorption were carried out. The breakthrough sequence in the AC bed was $H_2$ < $N_2$ < $CH_4$ < $C_2H_4$ < $C_2H_6$ while the sequence in the CMS bed was $H_2$ < $CH_4$ < $N_2$ < $C_2H_6$ < $C_2H_4$. The separation performance of the CMS bed during the adsorption step was lower than that of the AC bed. However, due to the characteristics of kinetic separation, the CMS bed could remove $CH_4/N_2$ as well asthe molecules that are larger than $C_2H_6$, which was not easy to be done by the AC bed. Since it was hard to regenerate the adsorption bed by simple depressurization, vacuum regeneration should be adopted. As a result, the pressure vacuum swing adsorption (PVSA) process, consisting of CMS pretreatment process and AC main process, was suggested to recover ethylene efficiently.

Removal of 1,4-dioxane in Ozone and Activated Carbon Process (오존과 활성탄 공정해서의 1,4-Dioxane 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1280-1286
    • /
    • 2006
  • Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of 1,4-dioxane in a continuous adsorption column. Breakthrough behavior was Investigated that the breakthrough points of coal, coconut and wood based AC were observed as 3600 bed volumn(BV), 1440 BV and 144 BV respectively. Adsorption capacity(X/M) of coal, coconut and wood based AC was observed. The reported results of adsorption capacity showed that coal based AC was highest(578.9 ${\mu}g/g$), coconut based AC was intermediate(142.3 ${\mu}g/g$) and wood based AC was lowest(7.4 ${\mu}g/g$) due to increasing specific surface area. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.48 g/day, 1.41 g/day and 6.9 g/day respectively. The constant characteristic of the system, k of coal based AC was found to be 91.5 and k of coconut based AC was found to be 17.9. Removal efficiencies of 1,4-dioxane with different ozonation dosages(2 and 5 mg/L) for 20 min ozonation had been shown 38% and 87% respectively. There was no observation for biological removal of 1.4-dioxane by attached micro-organisms when used(3.1 years and over 5 years) biological activated carbon(BAC) without pretreatment of oxidation were employed. When a combination of ozonation(2 mg/L and 5 mg/L) and BAC process for $10{\sim}30$ min was applied, removal efficiency for 1,4-dioxine increased only $2{\sim}6%$ compared to only applying ozonation. Therefore removal efficiency of BAC process prior to using oxidation was proven to negligible. Consequently, the results presented in this paper provide a better insight into the adsorption performance of 1,4-dioxane. This observation suggests that using virgin activated carbon made of coal is the best selection for removal of 1,4-dioxane in the water treatment for an advanced treatment. It is clear from this research that longer EBCT for ozonation or higher ozone concentration are more effective operation methods for removal of 1,4-dioxane than longer EBCT in the BAC process.