• Title/Summary/Keyword: Acting Effect

Search Result 906, Processing Time 0.037 seconds

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

The Numerical Study on the Flow Characteristics in Two-Dimensional Moonpool in Waves

  • Lee, Sang-Min;Im, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • The objective of this study is to examine the nonlinear fluid characteristics near and inside a moonpool in various sea conditions. We estimate the flow of the free surface in a moonpool taking into account the viscosity effect and the hydrodynamic forces that affects a moonpool and hull through CFD calculations. The comparison of horizontal forces per wave length shows that the hydrodynamic force is greater for the long wave length than short wave length, and the greatest hydrodynamic force acts on the moonpool when the wave length is equal to the ship's length. The horizontal force decreases as the wave amplitude decreases, and the hydrodynamic force acting on the moonpool in ${\lambda}=LBP$ is 10 times that in ${\lambda}=LBP/3$. The free surface demonstrates the piston mode, in which it oscillates up and down while remaining essentially flat, and the rise of the free surface level increases as the wave length increases. We can assume that the hydrodynamic force acting on the moonpool increases owing to the effect of a strong vortex for ${\lambda}=LBP$ and owing to the rise of the free surface level for ${\lambda}=LBP{\times}2$.

3D Dynamics of the Oscillating-Moving Load Acting in the Interior of the Hollow Cylinder Surrounded with Elastic Medium

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.713-738
    • /
    • 2019
  • In the paper the dynamics of the oscillating moving load acting in the interior of the hollow cylinder surrounded with elastic medium is studied within the scope of the exact field equations of 3D elastodynamics. It is assumed that the oscillating load act on the certain arc of the internal circle of the cylinder's cross section and this load moves with constant velocity along the cylinder's axis. The corresponding 3D dynamic problem is solved by employing moving coordinate system, the exponential Fourier transform and the presentation these transforms with the Fourier series. The expressions of the transforms are determined analytically, however their originals are found numerically. Under the investigations carried out in the paper the main attention is focused on the so-called "gyroscopic effect", according to which, the influence of the vibration frequency on the values of the critical velocity and interface stresses are determined. Numerical results illustrated this effect are presented and discussed. In particular, it is established how the non-axisymmetricity of the problem acts on the influence of the load oscillation on its critical velocity and on the interface stresses.

Numerical Study of Drag Forces Acting on a Submerged Square Cylinder in Steady Flow Condition (정상류 수몰 사각실린더에 작용하는 항력 특성에 관한 수치모의 연구)

  • Lee, Du Han;Kim, Young Joo;Rhee, Dong Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3950-3960
    • /
    • 2014
  • In this study, the drag forces on a submerged square cylinder were analyzed using a three dimensional hydrodynamic model. The numerical results were compared with the experimental results to check the reliability of the numerical simulations, and the characteristics of the drag forces with the relative depths were analyzed by analyzing the pressure acting on the cylinder surface, which are normally difficult to measure experimentally. The numerical results showed that the drag forces acting on a submerged square cylinder originate mainly from the pressure forces, and component of the shear forces decreased with increasing relative depth. The pressure coefficient distributions showed that in the case of a low relative depth, a relatively high pressure was formed in the front of a cylinder, and a relatively low pressure was formed in the rear, which gives a high drag coefficient. In a high relative depth, the pressure in the front decreased and pressure in the rear increased, which is a similar phenomenon to that normally observed in two dimensional square cylinder flow. The effect of the static pressure was analyzed and the surface elevation difference between the front and rear zone of a cylinder has a limited effect on the drag forces. Finally, the numerical results showed that the drag forces acting on a submerged square are dominated by the dynamic pressure formed by three dimensional flow and the distribution of local surface elevation.

Effect of Bedding Conditions on Earth Pressure Distribution of Embedded Pipes (EPS베딩재가 지중매설관의 토압에 미치는 영향)

  • Yoo, Nam-Jae;Lee, Hee-Kwang;Park, Byung-Soo;Jeong, Gil-Soo;Sim, Do-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.121-130
    • /
    • 2007
  • In this paper, large scale experimental model tests were performed to investigate the distribution of earth pressure acting on embedded rigid pipes having different bedding conditions. For these tests, very light weighted EPS blocks were installed at top and bottom of the rigid pipe and Jumunjin Standard Sand was used as a ground material. As results of model tests, for the case of no bedding on the pipe, the measured pressure at the bottom of the pipe was $4.96_{tf/m^2}$ whereas they were in the range of $1.87{\sim}4.96_{tf/m^2}$ in the case of EPS beddings being installed at the top and the bottom of the pipe. Therefore, for the case of EPS bedding being installed, the ratio of reduced pressures acting on the pipe, compared with the case of no EPS beddings, were in the rage of 16~62%. As a result of parametric test with changing the locations of EPS bedding, the trend of reducing the stress acting on the pipe was in the order of bottom bedding, top bedding, and top and bottom bedding. Effect of bedding positions on the reduced magnitude of acting pressure on the pipe was more significant in the case of top bedding than in the case of the bottom bedding.

Analysis of Earth Pressure Acting on Vertical Circular Shaft Considering Aching Effect (I) - A Study on Centrifuge Model Tests - (아칭효과를 고려한 원형수직터널의 토압 특성 분석 (I) - 원심모형실험 연구 -)

  • Kim, Kyoung-Yul;Lee, Dae-Soo;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.23-31
    • /
    • 2012
  • The purpose of this study is to analyze earth pressure acting on a circular shaft-tunnel considering arching effect by centrifuge modeling test on sands. The centrifuge testing method provides a way to model an in-situ stress state condition with a stress gradient within a laboratory specimen. A small-scale model of circular shaft-tunnel, which has a real diameter of 6.0 m and height of 15.0 m, was designed and tested twice under 75g-level. Additionally, an effect of excavation was presented by separating two segments of circular shaft wall to find behavioral properties and strength of earth pressure along with excavating ground. The test results were compared with those of the proposed earth pressure equation. The test results showed that earth pressure decreased by about 70% in comparison with existing two-dimensional earth pressure. This fact might be attributed to three-dimensional arching effects.

EFFECT OF WALL PROXIMITY ON DRAG AND LIFT FORCES ON A CIRCULAR CYLINDER (벽 근접 효과에 의한 물체의 항력 양력 변화)

  • Park, Hyun-Wook;Lee, Chang-Hoon;Choi, Jung-Il
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.68-74
    • /
    • 2012
  • Near-wall effect on wakes behind particles is one of the important factors in precise tracking of particles in turbulent flows. However, most aerodynamic force models for particles did not fully consider the wall effect. In the present study, we focused on changes of hydrodynamic forces acting on a particle depending on wall proximity. To this end, we developed an immersed boundary method with multi-direct forcing incorporated to a fully implicit decoupling procedure for incompressible flows. We validate the present immersed boundary method through two-dimensional simulations of flow over a circular cylinder. Comprehensive parametric studies on the effect of the wall proximity on the drag and lift forces acting on an immersed circular cylinder in a channel flow are performed in order to investigate general flow patterns behind the circular cylinder for a wide range of Reynolds number (0.01 ${\leq}$ Re ${\leq}$ 200). As the cylinder is closer to the wall, the drag coefficient decreases while the lift coefficient increases with a local maximum. Maximum drag and lift coefficients for different wall proximities decrease with increment of Reynolds number. Normalized drag and lift coefficients by their maximum values show universal correlations between the coefficients and wall proximity in a low Reynolds number regime (Re ${\leq}$ 1).

Effect of Mugwort Extract on the in vitro Mutagenicity, Desmutagenicity. (쑥 추춤물의 항돌연변이 활성효과)

  • Lee, Sung;Kwon, Dong-Jin;Yoo, Jin-Young;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.105-110
    • /
    • 1996
  • Mugwort has been known as a traditional substitutive foodstuff and as showing a physiologically beneficial function to a human being. Therefore, effect of mugwort extract in terms of mutagenicity and desmutagenicity was investigated to berify its function. Ethanol extract from mugwort did not exhibit any mutagenicity. On the contrary, inhibitory effects of the ethanol extract were observed on mutagenicity induced by aflatoxin $B_{1}(AFB_1)$, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole(Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole(Trp-P-2) and 2-nitroflourene(2NF) using Salmonella typhimurium reversion assay. On direct-acting mutagen(2NF, 3${\mu}$g/plate), ethanol extract showed a slight inhibitory effect of 19.7~22.9%, however on indirect-acting mutagen such as AFB1(2${\mu}$g/plate), Trp-P-1(1${\mu}$g/plate) and Trp-P-2(1${\mu}$g/plate), we observed higher inhibitory effect of 47.9~61.2%, 64.1~70.7%, 67.4~78.7%, respectively. Step-wise fractionation of the ethanol extract was done by using hexane, chloroform, ethyl acetate and water to obtain effective fraction. Among them, hexane, chloroform, and ethyl acetate fractions showed high inhibition of 63.0~80.0%, 77.5~82.1%, and 68.5~83.1%, respectively on the mutagenicity of $AFB_1$ in Sal. typhimurium TA98. Consequently, these results indicated that mugwort extract contains some compound(s) which may show desmutagenicity.

  • PDF

A Study on the Gravitational Effect Influencing Retention Behavior of Polymer in Thermal Field Flow Fractionation (열장 흐름 분획법에서 중력효과에 의한 고분자의 머무름 거동에 관한 연구)

  • Ryoo, Ki-Seok;Song, Byoung-Su;Park, Jong-Won;Min, Byoung-Ryul
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.11
    • /
    • pp.848-855
    • /
    • 1995
  • The influence of gravitational effect on the retention behaviors of polystyrene (PS) and polymethylmethacrylate (PMMA) in flat type thermal field flow fractionation (Thermal FFF) was studied. In the case of downward flow of mobile phase, the gravitational effect acting in the same direction of mobile phase flow increases as the angle of the system from the horizontal line (0˚to 60˚) increases. The decreasement of retention time of PS & PMMA was found. Also, the increasement of dimensionless λ values was found. And the difference in the retention time of PS & PMMA having different molecular weight decreases and also the resolution decreases. In the case of upward flow of mobile phase, the gravitational effect acting in the opposite direction of mobile phase flow increases as the angle of the system from the horizontal line (0˚to 60˚) increases. The increasement of retention time of PS & PMMA was found. Also, the decreasement of dimensionless λ values was found. And the difference in the retention time of PS & PMMA having different molecular weight increases and also the resolution increases.

  • PDF

Effects of Positive Psychological Capital of Fitness Center Trainers on Emotional Labor and Job Ability (피트니스센터 트레이너의 긍정심리자본이 감정노동, 직무능력에 미치는 영향)

  • Suh, Jae-Myeong;Kim, Do-Jin
    • Journal of Industrial Convergence
    • /
    • v.20 no.10
    • /
    • pp.169-176
    • /
    • 2022
  • The purpose of this study is to verify the effect of positive psychological capital of fitness center trainers on emotional labor and job ability. For this purpose, as a convenient sampling method, 265 questionnaires were conducted by directly visiting a fitness center in the metropolitan area, and item analysis, validity analysis, reliability analysis, correlation analysis, and multiple regression analysis were applied to the collected data. As a result of the analysis, the following conclusions were obtained. First, in the relationship between positive psychological capital and emotional labor, it exerted a meaningful influence on hope and optimism in deep acting and superficial acting. Next, in the relationship between positive psychological capital and job competency, leadership ability is self-efficacy, hope, management ability is optimism, hope, counseling ability is hope, optimism, self-efficacy, PR ability is self-efficacy, optimism, and program operation ability is optimism. exerted a significant influence on elasticity. In relation to emotional labor and job competency, counseling ability exerted a significant influence only in deep acting, and in leadership ability, management ability, PR ability, and program operation ability, deep acting and surface acting exercised a significant influence. In the future, it is necessary to study the characteristics and properties of trainers as emotional labor and follow-up studies on improvement measures.