• Title/Summary/Keyword: Actical device

Search Result 3, Processing Time 0.016 seconds

Real-Time Activity Monitoring Algorithm Using A Tri-axial Accelerometer (3축 가속도 센서를 이용한 실시간 활동량 모니터링 알고리즘)

  • Lho, Hyung-Suk;Kim, Yun-Kyung;Cho, We-Duke
    • The KIPS Transactions:PartD
    • /
    • v.18D no.2
    • /
    • pp.143-148
    • /
    • 2011
  • In this paper developed a wearable activity device and algorithm which can be converted into the real-time activity and monitoring by acquiring sensor row data to be occurred when a person is walking by using a tri-axial accelerometer. Test was proceeded at various step speeds such as slow walking, walking, fast walking, slow running, running and fast running, etc. for 36 minutes in accordance with the test protocol after wearing a metabolic test system(K4B2), Actical and the device developed in this study at the treadmill with 59 participants of subjects as its target. To measure the activity of human body, a regression equation estimating the Energy Expenditure(EE) was drawn by using data output from the accelerometer and information on subjects. As a result of experiment, the recognition rate of algorithm being proposed was shown the activity conversion algorithm was enhanced by 1.61% better than the performance of Actical.

Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer (3축 가속도 센서를 이용한 실시간 걸음 수 검출 알고리즘)

  • Kim, Yun-Kyung;Kim, Sung-Mok;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). The recognition rate of our algorithm was 97.34% better than that of the Actical device(91.74%) by 5.6%.

Step Count Detection Algorithm and Activity Monitoring System Using a Accelerometer (가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동량 모니터링 시스템)

  • Kim, Yun-Kyung;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.127-137
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts and activity levels. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing a portable gas analyzer (K4B2), an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). A regression equation estimating the energy expenditure (EE) was derived by using data from the accelerometer and information on the participants. The recognition rate of our algorithm was 97.34%, and the performance of the activity conversion algorithm was better than that of the Actical device by 1.61%.