• Title/Summary/Keyword: Actical

Search Result 5, Processing Time 0.025 seconds

Real-Time Activity Monitoring Algorithm Using A Tri-axial Accelerometer (3축 가속도 센서를 이용한 실시간 활동량 모니터링 알고리즘)

  • Lho, Hyung-Suk;Kim, Yun-Kyung;Cho, We-Duke
    • The KIPS Transactions:PartD
    • /
    • v.18D no.2
    • /
    • pp.143-148
    • /
    • 2011
  • In this paper developed a wearable activity device and algorithm which can be converted into the real-time activity and monitoring by acquiring sensor row data to be occurred when a person is walking by using a tri-axial accelerometer. Test was proceeded at various step speeds such as slow walking, walking, fast walking, slow running, running and fast running, etc. for 36 minutes in accordance with the test protocol after wearing a metabolic test system(K4B2), Actical and the device developed in this study at the treadmill with 59 participants of subjects as its target. To measure the activity of human body, a regression equation estimating the Energy Expenditure(EE) was drawn by using data output from the accelerometer and information on subjects. As a result of experiment, the recognition rate of algorithm being proposed was shown the activity conversion algorithm was enhanced by 1.61% better than the performance of Actical.

Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer (3축 가속도 센서를 이용한 실시간 걸음 수 검출 알고리즘)

  • Kim, Yun-Kyung;Kim, Sung-Mok;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). The recognition rate of our algorithm was 97.34% better than that of the Actical device(91.74%) by 5.6%.

Step Count Detection Algorithm and Activity Monitoring System Using a Accelerometer (가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동량 모니터링 시스템)

  • Kim, Yun-Kyung;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.127-137
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts and activity levels. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing a portable gas analyzer (K4B2), an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). A regression equation estimating the energy expenditure (EE) was derived by using data from the accelerometer and information on the participants. The recognition rate of our algorithm was 97.34%, and the performance of the activity conversion algorithm was better than that of the Actical device by 1.61%.

Relationship of Daily Activity and Biochemical Variables in the Elderly with Diabetes Mellitus (노인 당뇨병환자의 신체활동량과 생화학적 변수들과의 관계)

  • Sung, Ki-Wol
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • Purpose: This study was done to identify correlates and variables predicting daily activity among elders with Diabetes Mellitus (DM). Methods: Seventy-six elders registered in the Department of Endocrine Medicine at C university hospital participated in data collection. Data on daily activity and biochemical variables were collected via actigraph accelerator (Actical) and blood tests between September 2009 and July 2010. Data analysis was done using SPSS WIN 15.0 program and included one-way ANOVA, independent t-test, Pearson correlation coefficients, and stepwise multiple regression. Results: This study showed a positive correlation between daily activity and High Density Lipoprotein Cholesterol (HDL-C) and a negative correlation among Total Cholesterol (TC), Triglyceride (TG), and Low Density Lipoprotein Cholesterol (LDL-C). The variables predicting daily activity were frequency of exercise, HDL-C, and TC. These factors accounted for 40.0% of the variance of daily activity in elders with DM. Conclusion: The results indicate that it is necessary to improve daily activity to reduce Fasting Blood Glucose (FBG), TC, and TG in elders with DM.

Calorie Burn Estimation Algorithm from a Accelerometer using Multiple Regression Analysis (다중회귀분석을 이용한 3축 가속도 센서기반 활동량 추정 방법)

  • Choe, Sun-Taag;Lee, Kyu Feel;Kim, Jun Ho;Cho, We-Duke
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.953-955
    • /
    • 2016
  • 본 논문은 다중 회귀 분석을 이용하여 3축 가속도센서기반의 활동량을 추정하는 방법을 제안한다. 본 연구를 위해 총 59명의 피 실험자가 자체 제작한 활동량계를 착용한 뒤 트레드밀에서 일정한 속도로 걷는/뛰는 동작을 수행한 신호를 수집하였다. 수집한 3축 가속도 신호의 에너지 값에서 사전에 정의한 특징들을 산출한다. 그 다음 각 특징별로 선형, 지수, 로지스틱 회귀 분석을 적용하여 적합도가 높은 특징을 선정한다. 마지막으로 산출된 회귀식들을 사용하여 다중 회귀 분석 방법으로 활동량을 추정한다. 호흡가스 대사 분석기(K4B2)를 착용한 뒤 동일한 방법으로 실험을 수행 하고 제안한 방법과 정확도를 비교한 결과 제안한 방법의 정확도는 86.38 %로 산출되었다. 이는 기존의 Kim 외 3인의 연구결과[1]보다 2.70 %, Actical의 정확도보다 4.31 % 높은 수치이다.