• Title/Summary/Keyword: Acrylic-styrene

Search Result 54, Processing Time 0.024 seconds

A Study on the Material Resistance Against Segregation of Cement Mortar in Water (수중에서 시멘트 모르타르의 재료분리저항성에 관한 연구)

  • 정민철;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.941-948
    • /
    • 1994
  • An underwater grout on material resistance against segregation in water were studied by water soluble polymer (methyl cellulose and acrylic acid ester and styrene). The mechanical properties of the grout agents were investigated through the observation of the microstructure and application of fracture mechanic. When the soluble polymer MC+AAES added with 0.6 wt% to the underwater grout agents the compressive strength, flexural strength and Young's modulus were about 58 MPa, 10 MPa and 3.2 GPa respectively, and critical stress intensity was about 0.8 MNm-1.5. It can be considered that the strength improvement and fracture toughness increase may be due to the pore decrease and bonding force by material resistance against segregation in water.

  • PDF

The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand

  • Arasan, Seracettin;Nasirpur, Omid
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.361-375
    • /
    • 2015
  • Constructions over soft and loose soils are one of the most frequent problems in many parts of the world. Cement and cement-lime mixture have been widely used for decades to improve the strength of these soils with the deep soil mixing method. In this study, to investigate the freeze-thaw effect of sand improved by polymers (i.e., styrene-acrylic-copolymer-SACP, polyvinyl acetate-PVAc and xanthan gum) and fly ash, unconfined compression tests were performed on specimens which were exposed to freeze-thaw cycles and on specimens which were not exposed to freeze-thaw cycles. The laboratory test results concluded that the unconfined compressive strength increased with the increase of polymer ratio and curing time, whereas, the changes on unconfined compressive strength with increase of freeze-thaw cycles were insignificant. The overall evaluation of results has revealed that polymers containing fly ash is a good promise and potential as a candidate for deep soil mixing application.

Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner (카본블랙의 표면개질이 중합토너의 특성에 미치는 영향)

  • Lee, Eun Ho;Kim, Dae Su
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.628-633
    • /
    • 2013
  • Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surfacemodified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

Ammonium Adsorption Property of Acrylic Acid and Styren Grafting Polypropylene Non-Woven Fabric Synthesized by Photo-induced Polymerization (광조사 중합법에 의해 합성된 PP-g-AA와 PP-g-St 부직포의 암모니아성 질소 흡착특성 비교)

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1255-1263
    • /
    • 2008
  • The efficiency of PP-g-AA and PP-g-St nonwoven fabric synthesized by photoinduced polymerization as an adsorbent for removal $NH_3-N$ from waste water was evaluated. The results evidently indicate that the adsorption capacities of $NH_3-N$ onto PP-g-AA nonwoven fabric were extremely superior to those onto sulfonated PP-g-St nonwoven fabric, PK and zeolite. PP-g-AA nonwoven fabric showed the maximum adsorption capacity of $NH_3-N$ at the degree of grafting of 80 wt.%. The adsorption behaviour of $NH_3-N$ onto PP-g-AA and sulfonated PP-g-St nonwoven fabric was controlled by an ion exchange reaction, and tended to be similar to both trends of Langmiur and Freundlish isotherm. Futhermore, PP-g-AA non-woven fabric could be regenerated more than 5 times by a simple washing with 0.1N HCl with no decrease of adsorption capacity and no degradation of physical properties. Also sulfonated PP-g-St nonwoven fabric could be regenerated by washing with 0.1N ${H_2}{O_4}$. However, their regeneration efficiency was significantly low because grafting layer acted as functional radical for adsorption was continuously desquamated in the adsorption or regeneration processes, which resulted in decrease of adsorption capacity and weight of adsorbent. All results obtained from this study indicate that the $NH_3-N$ removal capacity of PP-g-AA non-woven fabric was extremely superior to those of PP-g-St non-woven fabric, PK and zeolite.

Change of Ink Absorption Characteristics of Ink-Jet Printing Paper with Polymeric Binder (바인더용 고분자 첨가제에 따른 잉크젯 인화지의 잉크흡수 특성변화)

  • Kim, Chul-Yong;Lee, Myung-Cheon
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.550-555
    • /
    • 2006
  • The coating material for the ink-jet printing paper tends to be waterbase as the waterbase ink-jet ink is used more widely. Waterbase coating material consists of alumina sol as a pigment, poly(vinyl alcohol) as a main binder and polymeric additive for improving properties. In this study, polymeric auditive was synthesized by combining one or toto monomers among methacrylic acid, acrylic acid and acrylamide to the basic monomers, styrene and n-butylacrylate. The properties of printability such as ink absorption, ink spreading, and optical density, glossiness and water resistance were investigated by changing the kinds of surfactants, the composition of monomers and the structure of polymer particles. Results showed that materials containing anionic surfactant and/or acrylic acid had problems in com-patibility with alumina sol. Also, coating materials containing acrylamide had good printability and lout glossiness while those containing methacrylic acid did not have good printability and high glossiness.

UV Curing and Peeling Characteristics of Acrylic Coating Ink with Various Amounts of Photoinitiator, Oligomer and Talc (광개시제, 올리고머 그리고 Talc 함량에 따른 아크릴계 코팅제의 UV경화 및 박리특성)

  • Yang, Jee-Woo;Seo, Ah Young;Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2013
  • As the usuage of tempered glass for touch panel increased rapidly with the development of industry, the amount of UV curable coating solution used to protect glass surfaces during a tempered glass manufacturing process increased as well. The UV curable coating has advantages compared to thermal curing such as shortened curing time and non-solvent. Appropriated polymer and monomer were used as an acid polymer to grant an alkali peeling ability. The monomers were 2-hydroxyl methylacrylate, 1,6-hexanediol diacrylate and dipentaerythritol hexaacrylate which have acryl groups of 1, 2, and 6, respectively. The combination of three different types of photoinhibitors were used and bisphenol A epoxy diacrylate was used as an oligomer. In this study, experiments were carried out by controlling the amount of photoinitiator, oligomer, and additive while maintaining the constant content of the acid polymer and the acrylic monomer. The changes in physical properties according to the additive content were investigated. It was found that the combination of photoinitiators was necessary to achieve the hardness above 4H and it was possible to control the delamination type of the coating film from a sheet to pieces by the addition of TPO as an initiator. The increase in oligomer contents increased the hardness and adhesiveness alongside dissection time. Talc content of 20 wt% showed the best results.

Experimental and numerical analysis of new bricks made up of polymer modified-cement using expanded vermiculite

  • Koksal, Fuat;del Coz Diaz, Juan J.;Gencel, Osman;Alvarez Rabanal, Felipe P.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.319-335
    • /
    • 2013
  • In this paper, the properties of the cement mortar modified with styrene acrylic ester copolymer were investigated. Expanded vermiculite as lightweight aggregate was used for making the polymer modified mortar test specimens. To study the effect of polymer-cement ratio and vermiculite-cement ratio on various properties, specimens were prepared by varying the polymer-cement and vermiculite-cement ratios. Tests of physical properties such as density, water absorption, thermal conductivity, three-point flexure and compressive tests were made on the specimens. Furthermore, a coupled thermal-structural finite element model of an entire corner wall was modelled in order to study the best material configuration. The wall is composed by a total of 132 bricks of $120{\times}242{\times}54$ size, joined by means of a contact-bonded model. The use of advanced numerical methods allows us to obtain the optimum material properties. Finally, comparisons of polymer-cement and vermiculite-cement ratios on physical properties are given and the most important conclusions are exposed.

Use of Cationic PAM as a Surface Sizing Additive to Improve Paper Properties

  • Seo, Man-Seok;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.245-250
    • /
    • 2006
  • This study was focused on the use of cationic PAM (Polyacrylamide) as a surface sizing additive to improve the surface sizing properties of paper. Effects of the ionic property, viscosity and charge density of PAM on bending stiffness of surface sized papers were investigated. Use of cationic PAM as a surface sizing additive improved bending stiffness while addition of anionic PAM did not show any effect. Increase of starch holdout with the addition of cationic PAM was attributed as a prime reason of stiffness increase. Viscosity of PAM was one of the most important factors affecting surface sizing due to its influence on the interaction between cationic PAM and oxidized starch solution. Greater improvement of bending stiffness of paper was obtained when high charged PAM was used as an additive. The order of addition was found to have significant influence on the effect of additives since it influences the formation of network structure among starch, cationic PAM, and SA (styrene acrylic acid copolymer). Investigation on the penetration of starch solution was carried out with CLSM (Confocal Laser Scanning Microscopy), and it was shown that the addition of cationic PAM to oxidized starch solution made starch molecules stay on the paper surface rather than penetrating into the paper structure because of the electrostatic interaction between negatively charged fibers and positively charged cationic PAM.

  • PDF

Dynamic Characteristics of the Long Span Truss-Type Lift Gate by Model Test (모형실험에 의한 장지간 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Hahm, Hyung-Gil;Ryu, Goang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.117-123
    • /
    • 2015
  • An experimental study of model truss-type vertical gate consisting of a truss and a plate was presented in this paper to examine the structural dynamics of the gates. A 1:61 scale model was constructed for the 95 m prototype gate using an acrylic truss and an acrylonitrile butadiene styrene plate. The scaled model was tested in a 1.6 m wide concrete flume for two orientations to determine the effects of gate orientation on structural vibrations. Natural frequencies of the model gate was measured and calibrated with FEM predictions. Vertical vibrations were measured under various operational conditions, including a range of bottom opening heights and different upstream and downstream water levels. The gate model with reverse direction was preferred due to its low overall vibrational response and flow level combinations. The test results also provide a basic dataset for development of operations guidelines that minimize flow-induced vibrations of the gates.

Laboratory/Field evaluation and calibration method of low-cost PM sensor for indoor PM2.5, PM10 measurement (실내 미세먼지 측정을 위한 저가형 PM 센서의 실험실/현장 평가 및 보정 방법)

  • Doheon, Kim;Dongmin, Shin;Jungho, Hwang
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.109-127
    • /
    • 2022
  • Recently, low-cost particulate matter (PM) sensors have been widely used in monitoring mass concentration. Maintaining the accuracy of the sensors is important and requires rigorous performance evaluation and calibration. In this study, two commercial low-cost PM sensors(LCS), Plantower PMS3003 and Plantower PMS7003, were evaluated in the laboratory and field with a reference-grade PM monitor (GRIMM 11-D). Laboratory evaluation was conducted with single/mixed particles of PSL (Poly Styrene Latex) in an acrylic chamber at 20℃ and relative humidity of 20%. Field evaluation was conducted inside a building of Yonsei University (Shinchon) from February 12 to March 31, 2022. In both evaluations, LCS measured values became different from reference measured values when the relative humidity was high or the outdoor air PM10/PM2.5 ratio was high. Based on the field evaluation, the LCS measured values were corrected through four different regression analysis models. As a result, the multivariate polynomial regression analysis model showed highest matching with the reference PM monitor (PM2.5 >0.9, PM10 >0.85). In this model, the PM10/PM2.5 ratio and relative humidity were chosen as independent variables.