• Title/Summary/Keyword: Acrylic-styrene

Search Result 54, Processing Time 0.022 seconds

Excimer Fluorescence Quenching of Poly (styrene-co-acrylic acid)-Eu Complex by Simple Hydrocarbons in Tetrahydrofuran Solutions

  • Park, Doo-Hee;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.42-45
    • /
    • 1986
  • Quenching of excimer fluorescence from polystyrene-acrylic acid copolymers containing $Eu^{3+}$ has been studied in tetrahydrofuran solution using simple aromatic hydrocarbons as quenchers under steady-state conditions. Aromatic hydrocarbons quenched collisionally the excimer fluorescence and their rate constants of quenching were determined. The magnitude of quenching constant is interpreted in terms of the cube root of the molar volume of quencher. Cycloalkanes were not effective in quenching the excimer fluorescence possibly due to different solubility characteristics from aromatic hydrocarbons.

Fluorescence of Styrene and Acrylic Acid Copolymers Containing Eu$^{3+}$ in Tetrahydrofuran Solution

  • Lee, Jong-Gyu;Kim, Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.164-168
    • /
    • 1985
  • The fluorescence emission of polystyrene-acrylic acid copolymers containing $Eu^{3+}$ in tetrahydrofuran solution was investigated by spectrofluorimetry. The excimer emission increased linearly with the polymer concentration up to approximately $5{\times}10^{-3}$M. Benzene and toluene collisionally quenched the excimer fluorescence and thier rate constants of quenching were determined. Quenching efficiencies decreased in the order: naphthalene > toluene > benzene. Analyses of Rayleigh scattering and europium emission showed no measurable structural changes observed under the experimental conditions.

Preparation and Application Characteristics of Carboxylated Styrene Butadiene Latex for Polymer Cement Mortar (폴리머 시멘트 몰타르 포장재용 Carboxylated Styrene Butadiene 라텍스의 제조와 적용 특성)

  • Lee, Bong-Kyu;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.789-794
    • /
    • 2012
  • For the purpose of development of the latex suitable for polymer cement mortar, experiments on the preparation of carboxylated styrene butadiene latex by the method of the two-step emulsion polymerization were performed. Methyl methacrylate, methacrylic acid and acrylic acid were selected as carboxylic co-monomer, styrene and butadiene as monomer, sodium dodecylbenzene sulfonate and sodium salt of lauryl sulfonate as anionic emulsifiers, and nonylphenoxy poly (ethyleneoxy) ethanol (n=10, 20, 40) as latex stabilizer. Potassium persulfate and sodium bisulfite were also used as redox initiator, and sodium monohydrogen phosphate and potassium carbonate as electrolytes. The effects of categories and concentration of carboxylic co-monomer, molecular weight control agent, crosslinking agent, and styrene/butadiene monomer ratio on the characteristics of latex were investigated. Polymerization recipes for preparation of polymer cement mortar could be proposed. The prepared latexes were tested for the physical properties such as compressive and flexural strength when latexes were mixed with cement mortar. The results showed that the latex could be adapted to polymer cement mortar. Also, it was recognized that the compressive and flexural strength were exhibited 25.4% and 45.3% respectively higher improvement than the quality standards at 28 days curing time.

Preparation of Son Exchange Kapok Fiber by Radiation Polymerization (방사선 중합법에 의한 Kapok 이온교환 섬유의 합성)

  • Cho, In-Hee;Kang, Phil-Hyun;Lim, Youn-Mook;Choi, Jae-Hak;Hwang, Taek-Sung;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.512-517
    • /
    • 2007
  • The grafting of styrene, glycidylmethacrylate (GMA) or acrylic acid (AAc) onto kapok fiber were performed by $Co_{60}\;{\gamma}-ray$ radiation-induced graft copolymerization. Degree of grafting (DG) of copolymers were increased with increasing monomer concentration and radiation dose. In addition to we confirmed the introduced functional group and measured ion exchange capacity. Morphology of the ion exchange fibers and their structures were analyzed by SEM and FT-IR.

Design and Properties of Laminating Waterborne PSA for Eco-friendly Flexible Food Packaging (식품연포장용 라미네이트 수성 감압점착제의 친환경적 적용에 대한 연구)

  • Lee, Jin-Kyoung;Shim, Myoung-Sik;Chin, In-Joo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.49-55
    • /
    • 2016
  • In this study, we designed an environment friendly, water-based adhesive using the acrylic emulsion method as a replacement for solvent-based adhesives, which are most commonly used in layered laminates for flexible food packaging. We designed adhesives with different combinations of anionic, non-ionic, and phosphoric ester surfactants, and with different concentrations of chain transfer agent (CTA). We also examined the effect of the degree of cross-linking by synthesizing and comparing 8 test group adhesives with different types of functional monomers. Additionally, we synthesized 2 other test group pressure-sensitive adhesives (PSA) using styrene/alpha-methyl styrene/acrylic acid (SAA) semipolymer dispersing agents (with molecular weights of 13,000 g/mol and 8,600 g/mol, respectively) to replace the conventional surfactants. We evaluated whether the 10 test group pressure-sensitive adhesives met the basic physical property criteria required for flexible food packaging by carrying out a physical analysis of their glass transition temperature (Tg), particle size, adhesion, and molecular weight. In our test, 2 test group adhesives manufactured with the combination of anionic and non-ionic surfactants, CTA concentration of 0.2%, and functional monomers of hydroxyethyl acrylate (HEA) and glycidyl methacrylate (GMA) demonstrated molecular weight and flexibility suitable for flexible packaging, with low adhesiveness and small particle size.

Free-Radical Polymerization and Copolymerization of N-Acetyl ${\alpha}$-Aminoacrylic Acid (N-Acetyl ${\alpha}$-aminoacrylic Acid의 자유라디칼 중합 및 혼성중합)

  • Il Hyun Park;Chong Kwnag Lee;Jae Ho Choi;Jung-Il Jin
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.235-246
    • /
    • 1982
  • The free radical polymerization and copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid were investigated. From the result of kinetic investigation of N-acetyl ${\alpha}$-aminoacrylic acid in DMF at $60^{\circ}C$, a rate equation of $R_p$ = $k_p[M]^{0.97}[I]^{0.59}$ was obtained. The overall activation energy for the polymerization was found to be 25.2 kcal/mole. Copolymerization of N-acetyl ${\alpha}$-aminoacrylic acid with acrylic acid and styrene was carried out for the determination of monomer reactivity ratios. The monomer reactivity ratios for the monomer pairs determined at 70.0{\pm}0.1^{\circ}C$ using benzoyl peroxide as an initiator are; $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.49, $r_2$(acrylic acid) = 1.41, $r_1$(N-acetyl ${\alpha}$-aminoacrylic acid) = 0.44, $r_2$(styrene) = 0.91. The values of Alfrey-Price's Q and e parameters for N-acetyl ${\alpha}$-aminoacrylic acid were calculated to be 0.51 and 0.16 for the both systems. Differential thermal analysis and thermogravimetry showed that acrylic acid copolymers have poorer thermal stability as compared with the homopolymer of N-acetyl ${\alpha}$-aminoacrylic acid.

  • PDF

Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex (카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구)

  • Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.31-38
    • /
    • 2002
  • Polymerization of carboxylated styrene-butadiene latex takes longer time than that of acrylic emulsion due to delocalization of radical in butadiene unit having conjugated double bond. A latex stability is the most important properties owing to use intact without separating polymer from base latex. For reducing polymerization time without decreasing any properties of latex, carbon tetra-chloride which has been used as the most popular chain transfer agent was replaced to combination of tert-dodecylmercaptane and ${\alpha}$-methylstyrene dimer. The replacement yielded reducement or 2 hr in polymerization time. In the increment step, charge amount of acrylic acid was limited to 0.3 part to restrain viscosity enhancement. Just after initial step, addition of 0.1 part acrylamide prevent polymer chain from diffusing between two region followed by giving hardness and final good adhesive force to latex particles.

Synthesis of High-Solids Acrylic Resins and Their Curing Rates with Melamine (하이솔리드 아크릴수지의 합성 및 멜라민과의 경화속도 연구)

  • Kim, Seung-Jin;Kim, Dae-Won;Im, Wan-Bin;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2001
  • An acrylic resin was synthesized with several monomers, styrene(St), 2-hydroxyethyl methacrylate(2-HEMA), n-butyl acrylate, methyl methacrylate, and acetoacetoxyethl methacrylate(AAEM) to prepare a high-solid coatings. Then, a high-solid acryl/melamine coatings was prepared by curing the acrylic resin with a curing agent, hexamethoxymethylmelamine(HMMM). The curing behavior of the acrylic resin with HMMM was investigated by the Ozawa method using DSC. For AAEM/HMMM and 2-HEMA/HMMM curing reactions, activation energies were 33.01 and 27.12 kcal/mol and frequency factors were $9.54{\times}10^{15}}$ and 1.53{\times}10^{13} $min^{-1}$, respectively. From the results, it was found out that 2-HEMA showed higher reactivity with the curing agent than AAEM.

Hydrophilization of hydrophobic membrane surfaces for the enhancement of water flux via adsorption of water-soluble polymers

  • Kim, Ka Young;Rhim, Ji Won
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.101-113
    • /
    • 2016
  • In this study, to improve the water flux of porous hydrophobic membranes, various water-soluble polymers including neutral, cationic and anionic polymers were adsorbed using 'salting-out' method. The adsorbed hydrophobic membrane surfaces were characterized mainly via the measurements of contact angles and scanning electron microscopy (SEM) images. To enhance the durability of the modified membranes, the water-soluble polymers such poly(vinyl alcohol) (PVA) were crosslinked with glutaraldehyde (GA) and found to be resistant for more than 2 months in vigorously stirred water. The water flux was much more increased when the ionic polymers used as the coating materials rather than the neutral polymer and in this case, about 70% of $0.31L/m^2{\cdot}h$ (LMH) to 0.50 LMH was increased when 300 mg/L of polyacrylamide (PAAm) was used as the coating agents. Among the cationic coating polymers such as poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA), poly(acrylic acid-comaleic acid) (PAM) and poly(acrylic acid) (PAA), PSSA_MA was found to be the best in terms of contact angle and water flux. In the case of PSSA_MA, the water flux was enhanced about 80%. The low concentration of the coating solution was better to hydrophilize while the high concentration inclined to block the pores on the membrane surfaces. The best coating condition was found: (1) coating concentration 150 to 300 mg/L, (2) ionic strength 0.15, (3) coating time 20 min.

Development of Hydrogel for Decrease Protein Adsorption and Application to Intraocular Lens (단백질흡착 감소용 하이드로겔의 개발 및 인공수정체로의 적용)

  • Ko, Na Young;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.1
    • /
    • pp.30-35
    • /
    • 2018
  • The purpose of this study was to decrease the protein adsorption and improve the function of the hydrophobic acrylic Intraocular lens(IOL). Hydrophobic acrylic intraocular lenses were prepared by using ethyleneglycol phenyletheracrylate (EGPEA), styrene and 2-hydroxyethyl methacrylate (HEMA). Polyvinyl pyrrolidone (PVP) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were used as additives. Water contents, wettability, light transmittance and protein adsorption amount were measured to evaluate the physical properties of the intraocular lens. The water content and wettability of all samples containing additives were increased and the amount of protein adsorption decreased. In particular, samples containing MPC showed a further decrease in protein adsorption. The hydrophobic acrylic intraocular lens with PVP and MPC was found to improve the function of the intraocular lens by reducing the protein adsorption while having basic physical properties.