• Title/Summary/Keyword: Acrylic fiber wastewater

Search Result 4, Processing Time 0.017 seconds

Improvement of the Advanced Treatment for Nitrogen Removal of Acrylic Fiber Wastewater (아크릴섬유 폐수의 생물학적 질소제거공정의 개선)

  • Lee, Chan-Won;Cho, In-Sung;Lim, Kyeong-Won
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.439-446
    • /
    • 2006
  • The effluent discharge standards of industrial wastewater has become more stringent since 2003. Many industrial wastewater treatment plants has been upgraded to advanced treatment facilities. There are high concentrations of nitrate(>200 mg/L) and ammonium(>50 mg/L) nitrogen in the acrylic fiber wastewater of H textile Co. Wastewater from acrylic fiber industry containing acrylonitrile, which may affect the subsequent biological treatment process. Manufacturing of acrylic fiber also produces shock loadings. Excessive acrylonitrile and polymer debris produced in the polymerization process was screened, coagulated with CaO and settled down. A preaeration system was added to treat this high pH effluent to remove volatile organic compound and ammonia nitrogen by the air stripping effect. it was found that nitrification rate was not sufficient in the Anoxic/Oxic(AO) process. One denitrification tank was converted to nitrification reactor to extend HRT of nitrification. Nitrification rate of ammonia nitrogen was promoted from 32% to 67% by this modification and effluent nitrogen concentration was well satisfied with the effluent standards since then.

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic 폐수의 전처리 및 UF/RO공정의 적용)

  • 이광현
    • Membrane Journal
    • /
    • v.11 no.4
    • /
    • pp.152-160
    • /
    • 2001
  • The pretreatment for COD removal of acrylic wastewater and separation characteristics of ultrafiltration hollow fiber type module and reverse osmosis spiral wound type module with the variation of applied pressure and temperature were discussed. Thc optimum washing time of membranes was decided with long team operation and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 14 hrs and that of reverse osmosis membrane was indicated similarly. CaO find sand filter for the first step, neutralization process with treated acrylic wastewater as the second step, UF/RO processes were used as final strep. It was shown treat COD and TDS were below allowable discharge value with the result.

  • PDF

Pretreatment of Acrylic Wastewater and Application of UF/RO Processes (Acrylic폐수의 전처리 및 UF/RO공저의 적용)

  • 이광현
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.05a
    • /
    • pp.135-138
    • /
    • 2001
  • Acrylic wastewater flux was discussed using modules of ultrafiltration hollow fiber and reverse osmosis spiral wound. The optimum backflushing times of membranes were decided and the degree of fouling was discussed with operating time. Permeate flux was decreased rapidly at 12hrs. Separation processes with ultrafiltration and reverse osmosis membranes were not suitable to remove COD and TDS. The improvement of pretreatment processes was needed.

  • PDF

Preparation and Evaluation of Chitin Derivatives and Their Utilization for Waste-water Treatement

  • Aly, Aly Sayed;Jeon, Byeong-Dae;Kim, Young-Jun;Park, Yun-Heum
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.10a
    • /
    • pp.53-58
    • /
    • 1996
  • The Chitin Thiocarbonate-Fe(II)-H2O2 redox initiator system was investigated for the graft copolymerization of acrylonitrile(AN) and acrylic acid(AA) monomers onto chitin powder. The reactions with vinyl monomers onto chitin were carried out under various the graft copolymerization conditions to elucidate the polymerization behavior in terms of graft yield. Reactions of chitin-acrylonitrile graft copolymer with hydroxyl amine hydrochloride and those with sodium hydroxide were conducted in order to obtain chitin-(amidoxime-co-acrylonitrile) and chitin-(acrylate-co-acrylamide) graft copolymers, respectively. The reaction efficiency was observed to depend on the alkali concentration, time, temperature, and the reactant concentrations. The prepared chitin derivatives were evaluated to find potential applications for use in wastewater treatments for adsorption and desorption of heavy metal ions as well as acidic and basic dyes.

  • PDF