• Title/Summary/Keyword: Acquired image

Search Result 1,860, Processing Time 0.037 seconds

The Enhancement of Inner-solid Image by the Bandwidth Increment of Vertically Spatial Frequency (축 방향 공간주파수 대역의 확장을 통한 고체 내부영상 개선)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hyun;Jun, Kye-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.176-180
    • /
    • 2001
  • In this paper, we have studies the images have been reconstructed by using combination of images which has been acquired by the variation of operating frequency. When inner images has been reconstructed, inner image has been superposition by surface state effect. In this case, image enhancement the phase object and enhance the contrast of inner image. In the result of the specimen for the round defect with 2mm diameter, for the types of the depth are 1.5mm, 2mm, 2.5mm, and 3mm, it has been show that the shape of defect has better than before this processing and phase contrast grow large twice. And we have constructed the acoustic microscope by using quadrature detector that is able simultaneously to acquired the amplitude and phase of the reflected signal. Father more we have studied the reconstruction method of the amplitude and phase images and the enhancement method of the defect images' contrast.

  • PDF

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.

Reconstruction of Transmitted Frames for Visual Quality Assessment of Streaming Video (스트리밍 비디오 화질 평가를 위한 수신 영상 복원)

  • Park, Su-Kyung;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.32-40
    • /
    • 2009
  • In this paper, we proposed an reconstruction algorithm of transmitted frames from displayed image on video terminal. For image quality assessment of the video streaming in the wireless network, we need information of the image that is transmitted to the end-user's device. Generally, subjective methods are widely used to evaluate the image quality by human beings because it is difficult to extract the transmitted image from the end-user's device. This paper presents an image reconstruction algerian based on the displayed image in video terminal for the extraction of the transmitted image. In the proposed method, we acquired the displayed image on video terminal using the camera. Camera-acquired images exhibit geometric and color distortions caused by characteristics of cameras and display devices. Therefore we correct the geometric distortion by exploiting the homography and color distortion by pre-computed look-up table. The experimental results show that the proposed measurement system yields promising estimation performance in terms of PSNR of $27{\sim}28dB$. We also carried out performance evaluation of the proposed method in terms of EPSNR and the quality of the estimated images by the proposed algerian was in fairly good range of MOS test scale.

Background Removing for Digital image self-adaptive acquisition in medical X-ray imaging

  • Li, Xun;Kim, Young-Ju;Song, Young-Jun
    • International Journal of Contents
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2008
  • In this paper, we propose a new method of background removing for digital self-adaptive acquisition in medical X-ray imaging. We analysis the construction of video digital acquisition system and main factors of acquired image quality, propose a more efficiency method to against background non-uniformly. With proposed method, non-uniform illumination back ground was well removed without image quality degradation.

Construction Site Scene Understanding: A 2D Image Segmentation and Classification

  • Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.333-335
    • /
    • 2015
  • A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.

  • PDF

The Application of Dynamic Acquisition with Motion Correction for Static Image (동적 영상 획득 방식을 이용한 정적 영상의 움직임 보정)

  • Yoon, Seok-Hwan;Seung, Jong-Min;Kim, Kye-Hwan;Kim, Jae-Il;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • Purpose: The static image of nuclear medicine study should be acquired without a motion, however, it is difficult to acquire static image without movement for the serious patients, advanced aged patients. These movements cause decreases in reliability for quantitative and qualitative analysis, therefore re-examination was inevitable in the some cases. Consequently, in order to improve the problem of motion artifacts, the authors substituted the dynamic acquisition technique for the static acquisition, using motion correction. Materials and Methods: A capillary tube and IEC body phantom were used. First, the static image was acquired for 60 seconds while the dynamic images were acquired with a protocol, 2 sec/frame${\times}$30 frames, under the same parameter and the frames were summed up into one image afterwards. Also, minimal motion and excessive motion were applied during the another dynamic acquisition and the coordinate correction was applied towards X and Y axis on the frames where the motion artifact occurred. But the severe blurred images were deleted. Finally, the resolution and counts were compared between the static image and the summed dynamic images which before and after applying motion correction, and the signal of frequency was analysed after frequency spatial domain was transformed into 2D FFT. Supplementary examination, the blind test was performed by the nuclear medicine department staff. Results: First, the resolution in the static image and summed dynamic image without motion were 8.32 mm, 8.37 mm on X-axis and 8.30 mm, 8.42 mm on Y-axis, respectively. The counts were 484 kcounts, 485 kcounts each, so there was nearly no difference. Secondly, the resolution in the image with minimal motion applying motion correction was 8.66 mm on X-axis, 8.85 mm on Y-axis and had 469 kcounts while the image without motion correction was 21.81 mm, 24.02 mm and 469 kcounts in order. So, this shows the image with minimal motion applying motion correction has similar resolution with the static image. Lastly, the resolution in the images with excessive motion applying motion correction were 9.09 mm on X-axis, 8.83 mm on Y-axis and had 469 kcounts while the image without motion correction was 47.35 mm, 40.46 mm and 255 kcounts in order. Although there was difference in counts because of deletion of blurred frames, we could get similar resolution. And when the image was transformed into frequency, the high frequency was decreased by the movement. However, the frequency was improved again after motion correction. In the blind test, there was no difference between the image applying motion correction and the static image without motion. Conclusion: There was no significant difference between the static image and the summed dynamic image. This technique can be applied to patients who may have difficulty remaining still during the imaging process, so that the quality of image can be improved as well as the reliance for analysis of quantity. Moreover, the re-examination rate will be considerably decreased. However, there is a limit of motion correction, more time will be required to successfully image the patients applying motion correction. Also, the decrease of total counts due to deletion of the severe blurred images should be calculated and the proper number of frames should be acquired.

  • PDF

Multiple Camera Based Imaging System with Wide-view and High Resolution and Real-time Image Registration Algorithm (다중 카메라 기반 대영역 고해상도 영상획득 시스템과 실시간 영상 정합 알고리즘)

  • Lee, Seung-Hyun;Kim, Min-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.10-16
    • /
    • 2012
  • For high speed visual inspection in semiconductor industries, it is essential to acquire two-dimensional images on regions of interests with a large field of view (FOV) and a high resolution simultaneously. In this paper, an imaging system is newly proposed to achieve high quality image in terms of precision and FOV, which is composed of single lens, a beam splitter, two camera sensors, and stereo image grabbing board. For simultaneously acquired object images from two camera sensors, Zhang's camera calibration method is applied to calibrate each camera first of all. Secondly, to find a mathematical mapping function between two images acquired from different view cameras, the matching matrix from multiview camera geometry is calculated based on their image homography. Through the image homography, two images are finally registered to secure a large inspection FOV. Here the inspection system of using multiple images from multiple cameras need very fast processing unit for real-time image matching. For this purpose, parallel processing hardware and software are utilized, such as Compute Unified Device Architecture (CUDA). As a result, we can obtain a matched image from two separated images in real-time. Finally, the acquired homography is evaluated in term of accuracy through a series of experiments, and the obtained results shows the effectiveness of the proposed system and method.

Noise Power Spectrum of Radiography Detectors: II. Measurement Based on the Spectrum Averaging (방사선 디텍터의 Noise Power Spectrum : II. Spectrum의 평균을 통한 측정)

  • Lee, Eunae;Kim, Dong Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.63-69
    • /
    • 2017
  • In order to observe the noise property of the flat-panel digital radiography detector, measuring the normalized noise power spectrum (NNPS) from acquired x-ray images is conducted. However, the conventional NNPS measurement has an unstable property depending on the acquired image. Averaging the sample periodograms of the input image is usually performed to estimate the NNPS values and increasing the number of samples can provide a reliable NNPS measurement. In this paper, for a finite number of images, two measurement methods, which are based on averaging spectra, such as the image periodogram, are proposed and their performances are analyzed. Using x-ray images acquired from two types of radiography detectors, the two spectrum averaging methods are compared and it is shown that averaging spectra based on the maximal number of combinations of the image pairs provides the best performance in measuring NNPS.

UAV Aerial Photogrammetry for Cross Sectional Extraction and Slope Stability Analysis in Forest Area (UAV 항공사진을 이용한 산림지 횡단면도 추출 및 사면안정성 평가)

  • Kim, Taejin;Son, Younghwan;Park, Jaesung;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.67-77
    • /
    • 2018
  • The objective of this study is to extract the shape of the slope from the images acquired using UAV and evaluate its suitability and reliability when applied to slope stability analysis. UAV is relatively inexpensive and simple, and it is possible to make terrain survey by generating point clouds. However, the image acquired from UAV can not be directly photographed by the forest canopy due to the influence of trees, resulting in severe distortion of the terrain. In this study, therefore, the effects of forest canopy were verified and the slope stability analysis was performed. Images acquired in winter and summer were used, because summer images are heavily influenced by the forest canopy and winter images are not. As a result of the study, the winter image is suitable for the extraction of slope shape, but severe terrain distortion occurs in the summer image. Therefore, slope stability analysis using slope shape extracted from summer image is impossible, so it should be modified for slope stability analysis. The modified slope did not completely eliminate the distortion of the terrain, but it could express the approximate shape of the slope. As a result of the slope stability analysis, the location and shape of the failure surface are the same, and the error of the safety factor is less than 0.2, which is close to the actual slope.

Geometric Modeling of Linear Pushbroom Images : SPOT5 Images

  • Koo, Ja-Hyuck;Jung, Hyung-Sup;Lee, Ho-Nam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1165-1167
    • /
    • 2003
  • Geometric corrections are required to compensate skew effects, earth rotation effects and so on. Parameters for geometric modeling can be acquired from the metadata information. These parameters allow to locate on ground every pixel of acquired images. In this paper, we tested the precision of geometric modeling of linear pushbroom images, acquired by SPOT 3 and 5 using the satellite orbit information itself without additional external data. The result acquired from examination to recovery the geometry of image using 30 GCPs have about 650m RMSE in SPOT 3 and about 170m RMSE in SPOT 5.

  • PDF