• Title/Summary/Keyword: Acqknowledge

Search Result 3, Processing Time 0.023 seconds

Search on the Human Vital Signal Using MP-150 (MP-150을 이용한 신체반응 신호처리 기법 고찰)

  • Quan, Vu Minh;Kim, Dae-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.245-247
    • /
    • 2015
  • Nowadays, the issue of maritime safety is an extremely important issue in the maritime industry and human' stress is one of the biggest causes of maritime accidents. The purpose of this study is to analyze the effects of the human' stress and find out the relationship between it and the risk of maritime accidents occur through the assistance of BIOPAC MP-150 and BIONOMADIX system.

  • PDF

The Physiological Response on Wear Comfort of Polyethylene Terephthalate Irradiated by Ultra-violet

  • Choi, Hae-Young;Lee, Jung-Soon
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.446-449
    • /
    • 2006
  • The purpose of this study was to evaluate the comfort of PET clothing treated by UV. The physiological responses of the human body were investigated. Mean skin temperature and physiological signals such as Electroencephalogram (EEG), and heart rate (Electrocardiogram, (ECG)) were examined for 20 minutes during stable wearing conditions. Mean skin temperature was measured every two seconds using Ramanathan's method. Physiological responses were measured using Biopac MP100 series and analyzed using the software, Acqknowledge 3.5.2. Psychological effects were analyzed every five minutes. Comfort of untreated PET clothing decreased with the passage of time. Compared with PET clothing untreated, treated for 30 minutes, and treated for 90 minutes, the analysis of EEG showed that PET clothing treated for 90 minutes was the most comfortable after 20 minutes. In addition, the interval of the heart rate shown on the ECG was the highest in PET clothing treated for 90 minutes. Skin temperature was the lowest in PET treated for 90 minutes. We thus conclude that suitable UV irradiation would improve comfort.

Fabrication of Strain Sensor Based on Graphene/Polyurethane Nanoweb and Respiration Measurement (그래핀/폴리우레탄 나노웹 기반의 스트레인센서 제작 및 호흡측정)

  • Lee, Hyocheol;Cho, Hyeon-seon;Lee, Eugene;Jang, Eunji;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • The purpose of this study is to develop a strain sensor based on a nanoweb by applying electrical conductivity to a polyurethane nanoweb through the use of Graphene. For this purpose, 1% Graphene ink was pour-coated on a polyurethane nanoweb and post-treated with PDMS (Polydimethylsiloxane) to complete a wearable strain sensor. The surface characteristics of the specimens were evaluated using a field emission scanning electron microscope (FE-SEM) to check whether the conductive material was well coated on the surface of the specimen. Electrical properties of the specimens were measured by using a multimeter to measure the linear resistance of the specimen and comparing how the line resistance changes when 5% and 10% of the specimens are tensioned, respectively. In order to evaluate the performance of the specimen, the gauge factor was obtained. The evaluation of the clothing was performed by attaching the completed strain sensor to the dummy and measuring the respiration signal according to the tension using MP150 (Biopac system Inc., USA) and Acqknowledge (ver. 4.2, Biopac system Inc., U.S.A.). As a result of the evaluation of the surface characteristics, it was confirmed that all the conductive nanoweb specimen were uniformly coated with the Graphen ink. As a result of measuring the resistance value according to the tensile strength, the specimen G, which was treated with just graphene had the lowest resistance value, the specimen G-H had the highest resistance value, and the change of the line resistance value of the specimen G and the specimen G-H is increased to 5% It is found that it increases steadily. Unlike the resistance value results, specimen G showed a higher gauge rate than specimen G-H. As a result of evaluation of the actual clothes, the strain sensor made using the specimen G-H measured the stable peak value and obtained a signal of good quality. Therefore, we confirmed that the polyurethane nanoweb treated with Graphene ink plays a role as a breathing sensor.