• 제목/요약/키워드: Acoustic transmitter

검색결과 65건 처리시간 0.022초

동해에서 직접수열 대역확산 전송에 기반한 장거리 수중음향통신의 해상실험 결과 (Sea trial results of long range underwater acoustic communication based on direct sequence spread spectrum transmission in the East Sea)

  • 라형인;안정하;윤창현;김기만;김인수
    • 한국음향학회지
    • /
    • 제40권4호
    • /
    • pp.304-313
    • /
    • 2021
  • 본 논문은 2020년 11월 동해에서 실시한 장거리 수중음향통신의 해상실험 결과를 제시한다. 하나의 이동하는 송신기와 16개의 수직 배열 수신기들을 통해 신호를 수집하였으며, 송신기와 수신기 사이의 거리는 약 20 km정도였다. 실험에 적용된 신호는 기존의 직접수열 대역확산 방식과 각 심볼마다 다수의 순환된 Pseudo Noise(PN) 시퀀스를 중첩함으로써 전송률을 높이는 중첩된 직접수열 대역확산 방식이다. 실험결과 채널 부호화 기법이 적용되지 않은 비부호화 비트 오류율에 있어서 기존의 직접수열 대역확산 방식은 16채널 평균 0.0005로 나타났으며, 중첩된 직접수열대역확산 방식은 0.00124을 보였다.

ISM 밴드 RF 모듈의 수신감도 향상에 관한 연구 (The Research about improvement of receive sensitivity for RF module in ISM band)

  • 이혁진;양오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.613-616
    • /
    • 2002
  • This paper has been studied an improvement of receive sensitivity for RF module of Industrial Scientific Medical(ISM) Band. In the paper, Also this paper handles receive sensitivity progress of RF module in ISM band. how to improve receive sensitivity adds to Surface Acoustic Wave(SAW) filter, Low Noise Filter(LNA), etc and insulates receiver and transmitter. And then the circuit is inspected by the effective range test of receiver and transmitter. And this Paper was designed that micro-controler controls the part of RF by software.

  • PDF

Development of an Acoustic-Based Underwater Image Transmission System

  • 최영철;임영곤;박종원;김시문;김승근
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF

진해만 입구에 방류한 대구(Gadus macrocephalus)의 행동 분석 (Behavioral analysis of Pacific cod (Gadus macrocephalus) released to the entrance of Jinhae Bay, Korea)

  • 신현옥;허겸;허민아;강경미
    • 수산해양기술연구
    • /
    • 제55권1호
    • /
    • pp.29-38
    • /
    • 2019
  • In order to investigate the behavioral characteristics of Pacific cod (Gadus macrocephalus) released at the entrance of Jinhae Bay, Korea, the direction and range of movement, swimming speed of the fish were measured with an acoustic telemetry techniques in winter, 2015. Three wild Pacific codes WC1 to WC3 (total length 66.0, 75.0, 76.0 cm; body weight 2.84, 2.79, 3.47 kg, respectively) were tagged with the acoustic transmitter. WC1 tagged with an acoustic transmitter internally by surgical method, WC2 and WC3, externally with the acoustic data logger and a micro data logger for recording audible sound waves including timer release unit. The movement routes of the tagged fish were measured more than five hours using VR100 receiver and a directional hydrophone. The directionality of the fish movement was tested by Rayleigh's z-Test, the statistical analysis, and a statistical program SPSS. Three tagged fishes were individually released on the sea surface around the entrance to the Jinhae Bay on 10 to 24 January 2015. WC1 moved about 13.32 km with average swimming speed of 0.63 m/s for six hours. The average swimming depth and water depth of the seabed on the route of WC1 were 7.2 and 32.9 m, respectively. The movement range of WC2 and WC3 were 7.95 and 11.06 km, approximately, with average swimming speed of 0.44 and 0.58 m/s for 5.1 and 5.3 hours, respectively. The average swimming depth of WC2 and WC3 were 18.7 and 5.0 m, and the water depth on the route, 34.4 and 29.8 m, respectively. Three fishes WC1 to WC3 were shown significant directionality in the movement (p < 0.05). Movement mean angles of WC1 to WC3 were 77.7, 76.3 and $88.1^{\circ}$, respectively. There was no significant correlation between the movement direction of fish (WC1 and WC2) and the tidal currents during the experimental period (p >= 0.05). Consequently, three tagged fishes were commonly moved toward outside of the entrance and headed for eastward of the Korean Peninsula, approximately, after release. It may estimate positively that the tidal current speed may affect to the swimming speed of the Pacific cod during the spring tide than the neap tide.

다중상태 소나시스템을 적용한 표적반향음 연구 - Part II : 수치모델링과 실험적 검증 (Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification)

  • 지윤희;배호석;변기훈;김재수;김우식;박상윤
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.440-451
    • /
    • 2014
  • A multi-static SONAR system consists of the transmitters and receivers separately in space. The active target echoes are received along the transmitter-target-receiver path and depend on the shape and aspect angle of the submerged objects at each receiver. Thus, the target echo algorithm used with a mono-static system, in which the transmitter and receiver are located at the same position, has limits in simulating the target echoes for a multi-static SONAR system. In this paper, a target echo modeling procedure for a 3D submerged object in space is described based on the Kirchhoff approximation, and the SONAR system is extended to a multi-static SONAR system. The scattered field from external structures is calculated on the visible surfaces, which is determined based on the locations of the transmitter and receiver. A series of experiments in an acoustic water tank was conducted to measure the target echoes from scaled targets with a single transmitter and 16 receivers. Finally, the numerical results were compared with experimental results and shown to be useful for simulating the target echoes/target strength in a multi-static SONAR system.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

AM 방식의 수중통신 (An underwater communication by AM technic)

  • 서호선;차일환
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1984년도 춘계학술발표회논문집
    • /
    • pp.33-36
    • /
    • 1984
  • An underwater communication technic using AM modulated ultrasonicwave was studied. The experiment were performed in the ahechoic water tank with 60KHz carrier wave and the frequency response of the system by demodulated signals were measured varing the degree of modulation and distance between transmitter and receiver. The bandwidth of transmitted signals was limited by the acoustic characteristics. As the result, it was found out that this kind of system is applicable to the underwater speech communication.

  • PDF

자왜 Tonpilz 변환기의 음향특성 해석 프로그램 개발 (Program Development for the Underwater-Acoustic Characteristic Analysis of Magnetostrictive Tonpilz Transducer)

  • 정은미;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.705-710
    • /
    • 2002
  • Magnetostrictive materials are used low frequency sonar transmitter instead of piezoelectric materials. But it is difficult to analyze due to the nonlinearity and hysteresis of magnetostrictive materials. This paper deals with the program development for the finite element modeling of magnetostrictive tonpilz transducers and for analyzing their acoustic characteristics. To take into account the nonlinearity of magnetostrictive materials, the magnetic field calculation is separated form the displacement calculation, and a curve fitting is adopted for the nonlinear behavior of the magnetic and mechanical strain fields. At first, the magnetic field is obtained by using a commercial FEM software and the displacement of the transducer is calculated by plugging the obtained magnetic field into forcing term. To verity the accuracy of the developed program, a comparison is made with a commercial code, ATILA.

  • PDF

Harvesting energy from acoustic vibrations of conventional and ultrasonic whistles

  • Hattery, Rebecca;Bilgen, Onur
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.615-624
    • /
    • 2017
  • This paper experimentally investigates the feasibility of harvesting vibration energy from whistles using piezoelectric materials. The end goal of this research is to generate sufficient power from the whistle to power a small radio transmitter to relay a basic signal - for example, a distress call. First, the paper discusses the current literature in energy harvesting from acoustic resonance. Next, the concept of an active whistle is presented. Next, results from energy harvesting experiments conducted on conventional and ultrasonic whistles undergoing human-actuation and actuation by a pressure-regulated air supply are presented. The maximum power density of the conventional whistle actuated by a human at 100 dB sound pressure level is $98.1{\mu}W/cm^3$.

무선 충전 가능한 블루투스 방식의 체내 음향신호 전송용 이식형 바이오 텔레메트리 시스템 구현 (Implementation of Implantable Bluetooth Bio-telemetry System for Transmitting Acoustic Signals in the Body with Wireless Recharging Function)

  • 이상준;김명남;이정현;임형규;조진호
    • 한국멀티미디어학회논문지
    • /
    • 제18권5호
    • /
    • pp.652-662
    • /
    • 2015
  • It is necessary to develop small, implantable bio-telemetry systems which can measure and transmit patients' bio-signals from internal body to external receiver. When measuring bio-signals, like electrical bio-signals, acoustic bio-signal measurement has also a big clinical usefulness. But, sound signal has larger frequency bandwidth than any other bio-signals. When considering these issues, a wireless telemetry system which has rapid data transmission rate proportional to wide frequency bandwidth is necessary to be developed. The bluetooth module is used to overcome the data rate limitation caused by the large frequency bandwidth. In this paper, a novel multimedia bluetooth biotelemetry system was developed which consists of transmitter module located in the body and receiver device located outside of the body. The transmitter consists of microphone, bluetooth, and wireless charging device. And the receiver consists of bluetooth and codec system. The sound inside the skin is captured by microphone and sent to receiver by bluetooth while charging. The wireless charging system constantly supplies the electric power to the system. To verify the performance of the developed system, an in vitro experiment has been performed. The results show that the proposed biotelemetry system has ability to acquire the sound signals under the skin.