• Title/Summary/Keyword: Acoustic study

Search Result 3,597, Processing Time 0.036 seconds

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

Notes on Descriptions of the Prosodic System in French Grammars in the Age of Enlightenment & the Departure of the International Phonetic Alphabet (계몽주의 시대 프랑스 문법서에서 기술한 운율 현상과 국제음성기호의 출발에 대한 고찰)

  • Park, Moon-Kyou
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.658-667
    • /
    • 2021
  • Our study aimed to analyze and reinterpret, by an acoustic approach, the descriptions of the 18th century prosody and introduce the figurative pronunciation system, which is the International Phonetic Alphabet pioneer. Our methodology compares and analyzes grammars and documents on the transcription system and restructures the prosodic structure. It is certain that the 18th century grammarians widely accepted the prosody theories made by Arnauld & Lancelot of the seventeenth century. In particular, grammar scholars accepted the dichotomous classification of the accent structures as prosodic and oratorical accents. The prosodic accent has a relation to intonation, and the oratorical accent has as its key elements intonation and intensity. Regarding the temporal structure, the lengthening of the final syllable was observed systematically by grammarians of the 18th century. This time structure is similar to that of today. Therefore, we can conclude that the final elongation, an essential characteristic of the modern French accent, has already played an imbued role in 18th century prosody. Despite this, the 18th century grammarians did not assign it the status of accent, as it was a stereotype that matches accent with intonation.

Fish Distribution Research Using Fishfinder at Fishery Area in the Cheongpyeong Reservoir (어군탐지기를 활용한 청평호 어업 구간의 어류 분포 연구)

  • Baek, Seung-Ho;Park, Sang-Hyeon;Song, Mi-Young;Kim, Jeong-Hui
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.384-389
    • /
    • 2021
  • This study was conducted on October 23, 2020 at the Cheongpyeong Reservoir located in Seorakmyeon, Gapyeong-gun, Gyeonggi-do, and analyzed the horizontal and vertical distribution patterns of fish based on data obtained using fishfinder. The total surface area of fishfinder survey conducted was 782,853 m2, and where the water depth (WD) ranges from 10 m to 12 m is widest which 31.7% of total surface area. As a result of the heat map analysis, fish density was highest at right bank under the Gapyeong-bridge, but there was no specific pattern in horizontal distribution of fish. As a result of vertical distribution of fish analysis, 86.6% of fishes are observed at below 6 m of the fish depth (FD, distance from water surface to fish). As a result of the relative height (RH, water depth-distance from bottom to fish ratio) analysis, there was a tendency that fishes are distributed in near surface area more as the WD increased. This tendency could have various reasons such as water temperature gradient along the water depth, and further studies are required for detailed explanation.

A method of wall absorption treatment for enhancing the speech intelligibility at a directional microphone array in a room (실내 공간 내 지향성 마이크 어레이에서의 음성 명료도 개선을 위한 벽면 흡음 처리 방법)

  • Ko, Byeong-Yun;Ih, Jeong-Guon;Cho, Wan-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.649-659
    • /
    • 2021
  • Wall absorption treatment effectively reduces reverberation, but requires a large area for a live room and each wall absorption affects speech intelligibility differently. In this study, we try to find the most effective wall for the absorption treatment using the beamforming array microphone in terms of speech intelligibility. The absorption importance factor is defined by using the collision number of reflected sounds on each wall. It allows estimating how much the speech signal will be enhanced by the absorption treatment. A cuboid room with a size of 107 m3 and a reverberation time of 1.1 s is selected for the simulation. When a Helmholtz-type absorption is treated on the wall with the most significant importance factor, the modified clarity for 500 and 1k Hz is improved by 5.1 dB and 4.8 dB respectively, and the speech transmission index is enhanced by 0.06. The difference in results between the proposed method and commercial simulation code is less than a Just-Noticeable Difference (JND). The absorption treatment on the wall with the most significant importance factor shows improvement greater than the wall with the largest area, and its difference is larger than a JND value.

Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model (동해 천해환경에서 측정된 중주파수 전달손실 측정: Rayleigh 및 HFBL 모델과의 비교)

  • Lee, Dae Hyeok;Oh, Raegeun;Choi, Jee Woong;Kim, Seongil;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.297-303
    • /
    • 2021
  • When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.

An Analysis of Temperature Change and TI MI using Tissue Mimicking Phantom in Ultrasonic Examination (초음파검사에서 인체모의 매질팬텀을 이용한 온도 변화와 TI MI 분석)

  • Cheol-Min, Jeon;Jae-Bok, Han;Jong-Gil ,Kwak;Jong-Nam, Song
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.751-759
    • /
    • 2022
  • Currently, ultrasound examination for diagnostic ultrasound and health examination purposes is widely used, and it is showing an increasing trend due to the application of health insurance. However, the risk of ultrasound has not been clearly identified so far, and in this study, surface and deep temperature changes according to frequency and mode were measured by using a tissue mimicking phantom and TI and MI values were compared. A simulated phantom was manufactured by adding a small amount of kappa-caraginan powder with acoustic characteristics similar to that of the human body and potassium chloride for solidification, and the change of surface and depth temperature was measured using a surface thermometer and a probe thermometer. As a result, the convex probe using low frequency showed a higher temperature increase than the linear probe using high frequency, so there was a significant difference, and the temperature increase was the highest on the surface, and the depth of 1cm showed a temporary temperature increase, but there was no significant temperature change. There was no change in the deep temperature of 5 cm to 15 cm, and the TI and MI values did not change during the test time. Since only the surface temperature rose during the 15-minute test and there was no temperature change in the core, so it is not expected to show a temperature change that is harmful to the human body. However, it is thought that prolonged examination of one area may cause temperature rise, so it should be avoided.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review (초음파-광음향 융합 영상을 위한 투명 초음파 변환기)

  • Shunghun Park;Jin Ho Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.441-451
    • /
    • 2023
  • Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.

The role of voice onset time (VOT) and post-stop fundamental frequency (F0) in the perception of Tohoku Japanese stops (도호쿠 일본어의 폐쇄음 지각에 있어서 voice onset time(VOT)과 후속모음 fundamental frequency(F0)의 역할)

  • Hi-Gyung Byun
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.35-45
    • /
    • 2023
  • Tohoku Japanese is known to have voiced stops without pre-voicing in word-initial position, whereas traditional or conservative Japanese has voiced stops with pre-voicing in the same position. One problem with this devoicing of voiced stops is that it affects the distinction between voiced and voiceless stops because their voice onset time (VOT) values overlap. Previous studies have confirmed that Tohoku speakers use post-stop fundamental frequency (F0) as an acoustic cue along with VOT to avoid overlap. However, the role of post-stop F0 as a perceptual cue in this region has barely been investigated. Therefore, this study explored the role of post-stop F0 in stop voicing perception along with VOT. Several perception tests were conducted using resynthesized stimuli, which were manipulated along a VOT continuum orthogonal to an F0 continuum. The results showed no significant regional difference (Tohoku vs. Chubu) for nonsense words (/ta-da/). However, for meaningful words (/pari/ 'Paris' vs. /bari/ 'Bali,' /piza/ 'pizza' vs. /biza/ 'visa'), a significant word effect was found, and it was confirmed that some listeners utilized the post-stop F0 more consistently and steadily than others. Based on these results, we discuss innovative listeners who may lead the change in the perception of stop voicing.

A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring (실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형)

  • Noh, Hyoseob;Son, Geunsoo;Kim, Dongsu;Park, Yong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.321-335
    • /
    • 2023
  • Monitoring sediment loads in natural rivers is the key process in river engineering, but it is costly and dangerous. In practice, suspended loads are directly measured, and total loads, which is a summation of suspended loads and bed loads, are estimated. This study proposes a real-time sediment discharge monitoring system using the horizontal acoustic Doppler current profiler (H-ADCP) and support vector regression (SVR). The proposed system is comprised of the SVR model for suspended sediment concentration (SVR-SSC) and for total loads (SVR-QTL), respectively. SVR-SSC estimates SSC and SVR-QTL mimics the modified Einstein procedure. The grid search with K-fold cross validation (Grid-CV) and the recursive feature elimination (RFE) were employed to determine SVR's hyperparameters and input variables. The two SVR models showed reasonable cross-validation scores (R2) with 0.885 (SVR-SSC) and 0.860 (SVR-QTL). During the time-series sediment load monitoring period, we successfully detected various sediment transport phenomena in natural streams, such as hysteresis loops and sensitive sediment fluctuations. The newly proposed sediment monitoring system depends only on the gauged features by H-ADCP without additional assumptions in hydraulic variables (e.g., friction slope and suspended sediment size distribution). This method can be applied to any ADCP-installed discharge monitoring station economically and is expected to enhance temporal resolution in sediment monitoring.