• Title/Summary/Keyword: Acoustic study

Search Result 3,580, Processing Time 0.03 seconds

Experimental Study of the Role of Gas-Liquid Scheme Injector as an Acoustic Resonator in a Combustion Chamber

  • Kim Hak-Soon;Sohn Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.896-904
    • /
    • 2006
  • In a liquid rocket engine, the role of gas-liquid scheme injector as an acoustic resonator or absorber is studied experimentally for combustion stability by adopting linear acoustic test. The acoustic-pressure signals or responses from the chamber are monitored by acoustic amplitude. Acoustic behavior in a rocket combustor with a single injector is investigated and the acoustic-damping effect of the injector is evaluated for cold condition by the quantitative parameter of damping factor as a function of injector length. From the experimental data, it is found that the injector can play a significant role in acoustic damping when it is tuned finely. The optimum tuning-length of the injector to maximize the damping capacity is near half of a full wavelength of the first longitudinal overtone mode traveling in the injector with the acoustic frequency intended for damping in the chamber. When the injector has large diameter, the phenomenon of the mode split is observed near the optimum injector length and thereby, the acoustic-damping effect of the tuned injectors can be degraded.

Development of Acoustic Substructure Synthesis Method using Component Mode Synthesis Method (모드합성법을 이용한 음향부분구조합성법의 개발)

  • 고상철;조용구;오재응;김준태;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.118-123
    • /
    • 1996
  • The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The results of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results, by FEM(finite element method) shows good agreement.

  • PDF

A Study for Reducing the Acoustic Cross Talk Level in an Array Type Piezoelectric Ultrasonic Transducer Using Acoustic Wells (음향 벽을 이용한 배열형 압전형 초음파 변환기의 음향 간섭 수준 감소를 위한 연구)

  • 김영신;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.208-216
    • /
    • 2003
  • In one dimensional linear array type piezoelectric ultrasonic transducers widely used for medical diagnosis, the acoustic cross talk caused by the structural acoustic coupling between the adjacent piezoelectric elements reduces significantly their performance. In the study, we have proposed an acoustic wall to reduce the acoustic cross talk by wave propagation through the surface the transducer which can not be prevented by conventional kerf and have analyzed using a finite element method the acoustic cross talk level with respect to the shape, size and materials of the acoustic wall mounted on a convex one dimensional piezoelectric ultrasonic transducer. We expect that the simulated results provide us with a valuable information to make an optimized design of the way type ultrasonic transducer minimizing the acoustic cross talk level.

The Relation of Enhancement Heat Transfer to Acoustic Pressure by Acoustic Streaming (음향흐름에 의한 음압과 열전달 촉진과의 관계)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.591-596
    • /
    • 2005
  • The objectives in the present study are to investigate that the enhancement heat transfer was experimentally measured and was compared with the acoustic pressure obtained by numerical analysis. From the results of the present study, a strong Fluid motion initiated by ultrasonic vibrations can affect heat and mass transfer. This phenomenon. called acoustic streaming, clearly observed by PIV measurement leads to increase in velocity of a Fluid which is a crucial physical concept to explain the enhancement heat transfer. The heat transfer coefficient is increased with increase in the ultrasonic intensities. The largest enhancement heat transfer (about 26%) is measured at the ultrasonic intensity of 300W. Acoustic streaming results from sudden acoustic pressure variations in the liquid. The results of numerical analysis reveal that acoustic pressure is increased by 59.5% at the ultrasonic intensity of 300W. The higher acoustic pressure near four ultrasonic transducers develops more intensive flow destroying the flow instability. Also, the profiles of acoustic pressure variation are consistent with those of enhancement heat transfer.

  • PDF

Study on Evaluation of Internal Leak of Turbine Control Valve in Power Plant Using Acoustic Emission Signal Measurement (음향방출 계측에 의한 터빈 제어밸브 내부누설 평가연구)

  • Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.12 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the turbine major valves relating to safety for turbine operating and prevention of turbine trouble at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized electro-hydraulic control oil flowed through turbine electro-hydraulic controller oil check valve and turbine power/trip fluid solenoid valve in the condition of actual turbine operating. The acoustic emission method was applied to the valves at the site, and the background noise was measured far the abnormal plant condition. To judge for the leak existence ell the object valves, voltage analysis and frequency analysis of acoustic signal emitted from infernal leak in the valve operating condition are performed. It was conformed that acoustic emission method could monitor for valve internal leak to high sensitivity.

  • PDF

A Study on Correlation Between Acoustic Pressure and Heat Transfer Augmentation via Ultrasonic Vibration (초음파 진동 가진시 발생하는 압력과 열전달 촉진과의 상관관계에 관한 연구)

  • Oh Yool-Kwon;Yang Ho-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.22-25
    • /
    • 2004
  • The present paper investigated the correlation between acoustic pressure and heat transfer augmentation in acoustic fields. The acoustic pressure predicted by numerical work and compared with the augmentation ratio of heat transfer coefficient was experimentally measured. Also, particle image velocimetry(PIV) was used for the visualization of velocity vectors and kinetic energy distribution inside liquid region. For the numerical work, SVS programed with Fortran language and based on a coupled FE-BEM was used. Results of the present study, the acoustic pressure is increased by $60\%$ and the largest augmentation of heat transfer about $28\%$ was measured. Finally, the profiles of acoustic pressure is consistent with that of augmentation of heat transfer. It is concluded that a correlation exists between the acoustic pressure and the heat transfer augmentation.

  • PDF

A Study on the Spectrum Analyzing of Internal Leak in Valve for Power Plant Using Acoustic Emission Method (음향방출법에 의한 발전용 밸브내부 누설의 스펙트럼분석 연구)

  • Lee, Sang-Guk;Lee, Sun-Ki;Lee, Jun-Shin;Sohn, Seok-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.694-699
    • /
    • 2004
  • The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given.

  • PDF

A Study on Architectural Acoustic Characteristics of an Open Air Performance Hall with the Membrane Structure (테프론(TEFRON)막 구조 야외공연장의 건축음향특성 분석에 관한 연구)

  • Kim, Jung-Joong;Sohn, Jang-Yeul;Park, Hye-Na
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.649-653
    • /
    • 2005
  • Recently, many membrane structure buildings are constructed with the trend of multi functional and high technological construction. The membrane structure has the characteristics such as distinguished architectural shape which can make variable space creation and can make economic use of material. Therefore, it is in the spotlight of sport complex, various concert hall, and public service buildings. However, the acoustic study of membrane structure has not been following up the increasing demand for the membrane structure. In this study, the acoustic characteristics of membrane structure will be studied and analyzed using architectural acoustic factors based on acoustic design theory And also, the differences between theoretical exhortation value and outcome of study will be studied with the basis of architectural acoustic material study.

  • PDF

A Study on the Acoustic Performance Design Technique of Underwater Acoustic Material (수중 음향재료의 음향성능 설계기법 연구)

  • Seo, Youngsoo;Ham, Ilbae;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.920-927
    • /
    • 2013
  • The requirement of acoustic performance about underwater acoustic material which is used in underwater environment more increases. Underwater acoustic material was made by viscoelastic material such as a rubber and a polyurethane etc. In order to increase an acoustic performance, several kinds of inclusions were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques were introduced and the acoustic characteristics of underwater acoustic material were studied. Echo reduction and transmission loss were calculated with volume fraction of inclusion in the material. Also the characteristic impedance and the input impedance of underwater acoustic material were obtained and effects on the echo reduction and transmission loss of material were discussed.

Architectural Acoustic Performance Renovation of the Large Gymnasium using Acoustic Simulation (음향시뮬레이션을 이용한 대형 실내체육관의 건축음향성능 개선에 관한 연구)

  • Yun, Jae-Hyun;Kim, Jae-Soo
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • In this study, an analysis is carried out on the acoustic design for an indoor gymnasium scheduled to be built at Buan County, Chonbuk Province. By way of background, the study examines the case of a large-scale indoor gymnasium that has been constructed in the local area of Hangan-myeon. There are many examples whereby this gymnasium could be used not only as a sporting facility for the residents, but also as a multipurpose space for public performances such as leisure activities, lectures, assembling activities, theatre and concerts etc. In order to maximize the functional utilization of such an indoor gymnasium, it is important to simultaneously verify the acoustic capabilities of the space in terms of Definition of both Voice and Music. However, as a large-scaled athletic facility, the building was designed with a high ceiling-height to accommodate its functional characteristics. The space forms a Sound Focus whereby the sound is concentrated at a specific part, and because the vibration of sound is too loud due to its broad volume, acoustic defects arise such as a significant number of Echoes. Using this gymnasium as a precedent, this study proposes an acoustic design based on the drawings of the indoor gymnasium that is scheduled to be built at B County, Chonbuk Province. The gymnasium is equipped with an optimized acoustic condition passing through the Acoustic Simulation Phase. From the results of an Acoustic Simulation, we can design an indoor gymnasium that is equipped with a considerably satisfying and improved acoustic performance compared with the building before it was reformed. It is also considered that the use of such materials can fundamentally reduce construction costs and can improve acoustic performance, at the planning and design stages for similar sporting facilities in the future.