• Title/Summary/Keyword: Acoustic response

Search Result 574, Processing Time 0.032 seconds

A Study on the Simulator for the fabrication of bandpass filter for the Wide-band Codeless Division Multiple Access (광 대역 통과 필터 제작을 위한 모의 실험기)

  • 유일현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.686-693
    • /
    • 2004
  • We have studied a method to fabricated a Surface Acoustic Waves (SAW) filter for Wide band Codeless Division Multiple Access(WCDMA) was formed on the Langasite substrate and was evaporated by Aluminum-Copper alloy and then we developed a simulator using the mathematica package. And, we can design and fabricate the Slanted finger Inter-digital Transducer (SFIT) for the purpose to decreased the ultimate rejections on side of the electrodes, and performed computer-simulation by simulator. Also, we have employed that the block weighted type Inter-digital Transduce(IDT) as input transduce of the filter and the withdrawal weighted type IDT as an output transducer of the filter in order to minimize effect of diffractions. We have employed that the number of pairs of the input and output IDT are 50 pairs and the thickness and the width of reflector are $5000\AA$, and $1\lambda/4(\cong3.6{\mu}m)$, respectively. Also the width of IDT' finger and the space between IDT' finger and reflector are $1\lambda$/16 and 1\lambda$/8, respectively. Frequency response of the fabricated SAW bandpass filter has the property that center frequency is about 190MHz, bandwidth at the 3dB is probably 4MHz and out-band attenuation is -60dB approximately.

Etching of Pt Thin Film for SAW Filter Fabrication (표면탄성파 필터 제작을 위한 Pt 박막 식각)

  • Choi, Yong-Hee;Song, Ho-Young;Park, Se-Geun;Lee, Taek-Joo;O, Beom-Hoan;Lee, Seung-Gol;Lee, El-Hang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.103-107
    • /
    • 2003
  • The inductively coupled plasma(ICP) etching process was selected to fabricate RF Surface Acoustic Wave(SAW) filters and a Pt thin film was sputtered on a $LiTaO_3$ substrate applied to electrode materials to reduce the spurious response and improve the power durability. Steep sidewall pattern was achieved employing $C_4F_8/Ar/Cl_2$ gas chemistry. We investigated an etching mechanism and parameter dependence of the Pt thin film about $C_4F_8$ addition. Sidewall etch angle was about $80^{\circ}$ at the $C_4F_8$ 20% mixing ratio. Fabricated SAW filter is consists of some series and parallel arm SAW resonators which work as impedance elements and show capacitance characteristics at out of the passband. It can be modified for $800{\sim}900\;MHz$ RF filters. External matching circuits were unnecessary.

  • PDF

Deposition of ZnO Thin Films by RF Magnetron Sputtering and Charcaterization of the ZnO thin film SAW filter (RF 마그네트론 스터터링에 의한 ZnO박막증착 및 SAW 필터 특성 분석)

  • Lee, Yong-Ui;Yang, Hyeong-Guk;Kim, Yeong-Jin;Han, Jeong-In;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.783-791
    • /
    • 1994
  • Piezoelectric ZnO thin films were deposited on 7059 glass substrate by rf magnetron sputtering. The effects of deposition parameter, such as rf power, gas pressure and $O_{2}$/Ar gas ratio, on the crystallinity and electrical properties of the deposited ZnO thin films were studied. It was found that the deposition rate was higher than the previously reported values. ZnO films were suitable for SAW filter since a standard deviation of XRD (002) peak rocking curve was less than $6^{\circ}$. ZnO thin films, which were deposited at $O_{2}$/Ar ratio larger than 25%, showed high resistance. SAW filter was fabricated using ZnO film, of which thickness was 0.25 of the wavelength of the propatating surface acoustic wave. The measured frequency response was consistent with the calculated one. The SAW filter had center frequency 39.08 MHz, phase velocity 2501 m/sec and insertion loss 29 dB.

  • PDF

Design, fabrication and performance characteristics of a 50kHz tonpilz type transducer with a half-wavelength diameter (반파장 직경을 갖는 50kHz tonpilz형 음향 변환기의 설계, 제작 및 성능특성)

  • Lee, Dae-Jae;Lee, Won-Sub
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In a split beam echo sounder, the transducer design needs to have minimal side lobes because the angular position and level of the side lobes establishes the usable signal level and phase angle limits for determining target strength. In order to suppress effectively the generation of unwanted side lobes in the directivity pattern of split beam transducer, the spacing and size of the transducer elements need to be controlled less than half of a wavelength. With this purpose, a 50 kHz tonpilz type transducer with a half-wavelength diameter in relation to the development of a split beam transducer was designed using the equivalent circuit model, and the underwater performance characteristics were measured and analyzed. From the in-air and in-water impedance responses, the measured value of the electro-acoustic conversion efficiency for the designed transducer was 51.6%. A maximum transmitting voltage response (TVR) value of 172.25dB re $1{\mu}Pa/V$ at 1m was achieved at 52.92kHz with a specially designed matching network and the quality factor was 10.3 with the transmitting bandwidth of 5.14kHz. A maximum receiving sensitivity (SRT) of -183.57dB re $1V/{\mu}Pa$ was measured at 51.45kHz and the receiving bandwidth at -3dB was 1.71kHz. These results suggest that the designed tonpilz type transducer can be effectively used in the development of a split beam transducer for a 50kHz fish sizing echo sounder.

A Study on the Implementation of SAW ID Reader Platform (SAW ID리더 플랫폼 구현에 관한 연구)

  • Yu, Ho-Jun;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.766-771
    • /
    • 2008
  • As the practical range of SAW Device extended into various fields including physical sensor, chemical sensor and ID Tag, the platform for various SAW Devices is required more than ever. While SAW ID or Sensors advanced remarkably, the development of platform which applies to SAW Sensor left much to be desired. Therefore this paper represents the SAW platform in order to use SAW ID such as ID Tag or Sensors more conveniently. The SAW platform consists of a RF module which can recognize SAW ID and a main module which has a hish performance processor in order to process the response signal of SAW ID. The main module which has a high performance processor is designed by GUI environmental type to ensure that users are able to use the platform more easily. In this paper, the SAW platform, which is based on ARM9 core processor, used Windows Embedded CE 6.0 OS which brings friendly interface to users. Also the developers can make less effort to design various applications with sensors.

Emergency vehicle priority signal system based on deep learning using acoustic data (음향 데이터를 활용한 딥러닝 기반 긴급차량 우선 신호 시스템)

  • Lee, SoYeon;Jang, Jae Won;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.44-51
    • /
    • 2021
  • In general, golden time refers to the most important time in the initial response to accidents such as saving lives or extinguishing fires. The golden time varies from disaster to disaster, but is aimed at five minutes in terms of fire and first aid. However, for the actual site, the average dispatch time for ambulances is 9 minutes and the average transfer time is 17.6 minutes, which is quite large compared to the golden time. There are various causes for this delay, but the main cause is traffic jams. In order to solve the problem, the government has established emergency car concession obligations and secured golden time to prioritize ambulances in places with the highest accident rate, but it is not a solution in rush hour when traffic is increasing rapidly. Therefore, this paper proposed a deep learning-based emergency vehicle priority signal system using collected sound data by installing sound sensors on traffic lights and conducted an experiment to classify frequency signals that differ depending on the distance of the emergency vehicle.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Blind Noise Separation Method of Convolutive Mixed Signals (컨볼루션 혼합신호의 암묵 잡음분리방법)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.409-416
    • /
    • 2022
  • This paper relates to the blind noise separation method of time-delayed convolutive mixed signals. Since the mixed model of acoustic signals in a closed space is multi-channel, a convolutive blind signal separation method is applied and time-delayed data samples of the two microphone input signals is used. For signal separation, the mixing coefficient is calculated using an inverse model rather than directly calculating the separation coefficient, and the coefficient update is performed by repeated calculations based on secondary statistical properties to estimate the speech signal. Many simulations were performed to verify the performance of the proposed blind signal separation. As a result of the simulation, noise separation using this method operates safely regardless of convolutive mixing, and PESQ is improved by 0.3 points compared to the general adaptive FIR filter structure.

Photo-Transistors Based on Bulk-Heterojunction Organic Semiconductors for Underwater Visible-Light Communications (가시광 수중 무선통신을 위한 이종접합 유기물 반도체 기반 고감도 포토트랜지스터 연구)

  • Jeong-Min Lee;Sung Yong Seo;Young Soo Lim;Kang-Jun Baeg
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.143-150
    • /
    • 2023
  • Underwater wireless communication is a challenging issue for realizing the smart aqua-farm and various marine activities for exploring the ocean and environmental monitoring. In comparison to acoustic and radio frequency technologies, the visible light communication is the most promising method to transmit data with a higher speed in complex underwater environments. To send data at a speedier rate, high-performance photodetectors are essentially required to receive blue and/or cyan-blue light that are transmitted from the light sources in a light-fidelity (Li-Fi) system. Here, we fabricated high-performance organic phototransistors (OPTs) based on P-type donor polymer (PTO2) and N-type acceptor small molecule (IT-4F) blend semiconductors. Bulk-heterojunction (BHJ) PTO2:IT-4F photo-active layer has a broad absorption spectrum in the range of 450~550 nm wavelength. Solution-processed OPTs showed a high photo-responsivity >1,000 mA/W, a large photo-sensitivity >103, a fast response time, and reproducible light-On/Off switching characteristics even under a weak incident light. BHJ organic semiconductors absorbed photons and generated excitons, and efficiently dissociated to electron and hole carriers at the donor-acceptor interface. Printed and flexible OPTs can be widely used as Li-Fi receivers and image sensors for underwater communication and underwater internet of things (UIoTs).

Electric-Field-Induced Strain Measurement of Ferroelectric Ceramics Using a Linear Variable Differential Transducer (선형 가변 차동 변압기를 이용한 강유전 세라믹의 전기장 인가에 따른 변형 측정)

  • Hyoung-Su Han;Chang Won Ahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • The measurement of strain under an electric field has been widely employed to comprehend the fundamental principles of electro-mechanical responses in ferroelectric, piezoelectric, and electrostrictive materials. In particular, understanding the strain properties of piezoelectric materials in response to electrical stimulation is crucial for researching and developing components such as piezoelectric actuators, acoustic devices, and ultrasonic generators. This tutorial paper introduces the components and operational principles of the linear variable differential transducer (LVDT), a widely used displacement measurement device in various industries. Additionally, we present the configuration of an experimental setup using LVDT to measure the strain characteristics of ferroelectric, piezoelectric, or electrostrictive materials under the application of an electric field. This paper includes simple measurement results and analyses obtained through the LVDT experimental setup, providing valuable information on research methods for the electro-mechanical interactions of various materials.