• Title/Summary/Keyword: Acoustic pyrometry

Search Result 1, Processing Time 0.017 seconds

Regeneration of the Retarded Time Vector for Enhancing the Precision of Acoustic Pyrometry (온도장 측정 정밀도 향상을 위한 시간 지연 벡터의 재형성)

  • Kim, Tae-Kyoon;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • An approximation of speed of sound in the measurement plane is essential for the inverse estimation of temperature. To this end, an inverse problem relating the measured retarded time data in between set of sensors and actuators array located on the wall is formulated. The involved transfer matrix and its coefficient vectors approximate speed of sound of the measurement plane by using the radial basis function with finite number of interpolation points deployed inside the target field. Then, the temperature field can be reconstructed by using spatial interpolation technique, which can achieve high spatial resolution with proper number of interpolation points. A large number of retarded time data of acoustic paths in between sensors and arrays are needed to obtain accurate reconstruction result. However, the shortage of interpolation points due to practical limitations can cause the decrease of spatial resolution and deterioration of the reconstruction result. In this works, a regeneration for obtaining the additional retarded time data for an arbitrary acoustic path is suggested to overcome the shortage of interpolation points. By applying the regeneration technique, many interpolation points can be deployed inside the field by increasing the number of retarded time data. As a simulation example, two rectangular duct sections having arbitrary temperature distribution are reconstructed by two different data set: measured data only, combination of measured and regenerated data. The result shows a decrease in reconstruction error by 15 % by combining the original and regenerated retarded time data.