• Title/Summary/Keyword: Acoustic noise reduction

Search Result 445, Processing Time 0.031 seconds

Improvement and Evaluation of the Korean Large Vocabulary Continuous Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼(ECHOS)의 개선 및 평가)

  • Kwon, Suk-Bong;Yun, Sung-Rack;Jang, Gyu-Cheol;Kim, Yong-Rae;Kim, Bong-Wan;Kim, Hoi-Rin;Yoo, Chang-Dong;Lee, Yong-Ju;Kwon, Oh-Wook
    • MALSORI
    • /
    • no.59
    • /
    • pp.53-68
    • /
    • 2006
  • We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.

  • PDF

Shape Optimization of a Switched Reluctance Motor Having 6/4 Pole Structure for the Reduction of Torque Ripple Using Response Surface Methodology (반응표면법을 이용한 6/4극 구조를 갖는 스위치드 릴럭턴스 모터의 토크 리플 저감을 위한 형상 최적설계)

  • Choi, Yong-Kwon;Yoon, Hee-Sung;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.608-616
    • /
    • 2006
  • Recently, a switched reluctance motor is widely used in various industries because it has many advantages such as a simple structure, robustness, less maintenance, high torque/weight ratio, and easy speed control over other types of motors. However, a switched reluctance motor inherently produces acoustic noise and vibration caused by torque ripple. Applications of these motors where silent operation is desirable have thus been limited. In this paper, a new stator pole face having a non-uniform air-gap and a pole shoe attached to the lateral face of the rotor pole are suggested in order to minimize torque ripple. The effects of each design parameter are validated using a time-stepping finite element method. The parameters are optimized by utilizing response surface method (RSM) combined with (1+1) evolution strategy. The result shows that the optimized shape gives higher average torque and drastically reduced torque ripple.

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

Torque Ripple Reduction Algorithm of PM Synchronous Motor at High Speed Operation (영구자석 동기 전동기의 고속운전 시 토크리플 저감 알고리즘)

  • Kim, Jong-Hyun;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.429-436
    • /
    • 2015
  • Torque ripples generate mechanical vibration at low speed and acoustic noise at high speed. The back emf harmonics of a PM synchronous motor is one of the main sources of torque ripples. To reduce torque ripples resulting from back emf harmonics, dq-axis harmonic currents that reduce the torque ripples are generally compensated to the current controller. Harmonic current compensation is effective at low speed, but it is not applicable at high speed because of the limited bandwidth of the current controller. In this study, dq-axis harmonic voltage compensation that can reduce torque ripples at high speed is proposed. The dq-axis harmonic voltages are calculated from the motor speed and the dq-axis harmonic currents. The effectiveness of the proposed method in reducing torque ripple is verified by a simulation and experiments.

A Study on New Harmonic Elimination Method Using Walsh Series (왈쉬급수를 사용한 새로운 고조파 제거 방법에 관한 연구)

  • 박민호;안두수;원충연;이해기;이명규;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 1990
  • In the variable speed driving system of a three phase induction motor controlled by a PWM inverter, the output terminal contains considerable amount of harmonic components of the voltage waveform due to the switching action of semiconductor devices, causing torque ripples, acoustic noise and oscillation of the motor. This paper describes a new algorithm which eliminates the harmonics and controls the fundamental voltage in three phase PWM inverter output waveform. The new algorithm utilizes the technique of particular harmonics elimination (PHE) by walsh series in three phase PWM inverter output waveform. A microprocessor (8086 CPU)-controlled three phase induction motor system is described to realize this algorithm. The system is designed for 3 phase output voltage in the 1-60Hz interval where 5th and 7th harmonics, and 5th, 7th, 11th, and 13th harmonics are eliminated. Also, the fundamental wave amplitude is designed to be proportional to the output frequency. The performance of the proposed method shows sufficient elimination of the harmonics and also reduction of computation time which determines switching pattern. The proposed PWM pattern by Walsh series, is effective not only to induction motors but also to other electromagetic equipments such as voltage regulators and UPS.

Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor

  • Behbahanifard, Hamidreza;Sadoughi, Alireza
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.878-888
    • /
    • 2016
  • Cogging torque has a negative impact on the operation of permanent magnet machines by increasing torque ripple, speed ripple, acoustic noise and vibration. In this paper Magnet Shifting Method has been used as a tool to reduce the cogging torque in inset Line Start Permanent Magnet Synchronous Motor (LSPMSM). It has been shown that Magnet Shifting Method can effectively eliminate several lower-order harmonics of cogging torque. In order to implement the method, first the expression of cogging torque is studied based on the Fourier analysis. An analytical expression is then introduced based on Permanent Magnet Shifting to reduce cogging torque of LSPMS motors. The method is applied to some existing machine designs and their performances are obtained using Finite Element Analysis (FEA). The effect of magnet shifting on pole mmf (magneto motive force) distribution in air gap is discussed. The side effects of magnet shifting on back-EMF, core losses and torque profile distortion are taken into account in this investigation. Finally the experimental results on two prototypes 24 slot 4 pole inset LSPMS motors have been used to validate the theoretical analysis.

A Study on the Linear Array Beamforming by Cross Correlation Matrix (상호상관 행렬을 이용한 선배열 빔형성 기법 연구)

  • 황수복;이성은
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.31-36
    • /
    • 2001
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise (S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. The improvement of beamforming is very important to detect modern underwater targets as noise reduction technology leads to considerably low-level acoustic emissions in the long range in complex environmental sea. In this paper, we proposed the spatial cross correlation beamforming (SCCBF) algorithm using cross correlation matrix of individual hydrophone pairs of linear array sensors. By the theoretical analysis and simulation, the proposed SCCBF is demonstrated that its performances compared to conventional beamforming (CBF) output can be obtain above 3dB of array gain and about half of beam width represented the bearing accuracy in target detection. Also, this paper presents sea test result of linear passive sonar system that the proposed algorithm implemented.

  • PDF

Linewidth Reduction of a Yellow Laser by a Super-cavity and the Measurement of the Cavity Finesse (초공진기를 이용한 노란색 레이저의 선폭 축소 및 초공진기의 예리도 측정)

  • Lee, Won-Kyu;Park, Chang-Yong;Park, Sang-Eon;Ryu, Han-Young;Yu, Dai-Hyuk;Mun, Jong-Chul;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2010
  • Sum frequency generation was utilized to obtain a yellow laser with the wavelength of 578.4 nm for a probe laser of an Yb lattice clock. The output of an Nd:YAG laser with wavelength of 1319 nm and that of an Yb-fiber laser with wavelength of 1030 nm were passed through a waveguided periodically-poled lithium niobate (WG-PPLN) for sum frequency generation. It is required that the probe laser has a linewidth of the order of 1 Hz to fully resolve the Yb lattice clock transition. Thus, the linewidth of the probe laser was reduced by stabilizing the frequency to a super-cavity. This was made of ULE with a low thermal expansion coefficient, and was mounted on an active vibration-isolation table at the optimal point for the reduced sensitivity to vibration. Also, this was installed in a vacuum chamber, and the temperature was stabilized to 1 mK level. This system was installed in an acoustic enclosure to block acoustic noise. The finesse of the super-cavity was measured to be 380 000 from the photon life time of the cavity.

An Adaptive AEC Based on the Wavelet Transform Using M-channel Subband QMF Filter Banks (M-채널 서브밴드 QMF 필터뱅크를 이용한 웨이브릿변환기반 적응 음향반향제거기)

  • 안주원;권기룡;문광석;김문수
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • This paper presents an adaptive AEC(acoustic echo canceller) based on the wavelet transform using M-channel subband QMF filter banks. The proposed algorithm improves the performance of AEC with a realtime process by a low complexity of wavelet transform filter banks, a subband processing and a orthogonality of wavelet subband filter. Adaptive filter coefficients of each subband are updated using LMS algorithm with a low complexity and a easy realization for a realtime processing and a reduction of hardware cost. For a input signal, a white Gaussian noise and a real speech signal with a environment noises are used for a performance estimation of the proposed algorithm. As a result of computer simulation, the proposed AEC has a low asymptotic error, a low computation complexity and a robust performance.

  • PDF

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.