• 제목/요약/키워드: Acoustic monitoring

검색결과 482건 처리시간 0.035초

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials

  • Li, Hui;Wang, Wentao;Zhou, Wensong
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.307-325
    • /
    • 2014
  • A newly developed method based on energy is presented to study the damage pattern of FRP material. Basalt fiber reinforced polymer (BFRP) is employed to monitor the damage under fatigue loading. In this study, acoustic emission technique (AE) combined with scanning electronic microscope (SEM) technique is employed to monitor the damage evolution of the BFRP specimen in an approximate continuous scanning way. The AE signals are analyzed based on the wavelet transform, and the analyses are confirmed by SEM images. Several damage patterns of BFRP material, such as matrix cracking, delamination, fiber fracture and their combinations, are identified through the experiment. According to the results, the cumulative energy (obtained from wavelet coefficients) of various damage patterns are closely related to the damage evolution of the BFRP specimens during the entire fatigue tests. It has been found that the proposed technique can effectively distinguish different damage patterns of FRP materials and describe the fatigue damage evolution.

AE/MS 모니터링시스템개발과 적용연구 (Development of AE/MS monitoring system and its application)

  • 천대성;정용복;박찬;신중호;장현익
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.199-210
    • /
    • 2008
  • Acoustic emission(AE)/Microseimsic(MS) activities are low-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is not easy to determine the precursor and initiation stress level of failure in displacement detection method. To overcome this problem, AE/MS techniques for detection of structure failure and damage have recently adopt in civil engineering. In this study, AE/MS monitoring system, which consist of sensor, data acquisition and operation program, is constructed with domestic technology. To verify and optimize the developed system, we are now carrying out the field application at an underground research laboratory and the developed AE/MS monitoring will be used in detecting of seismic events with various scales.

  • PDF

광섬유를 이용한 상시감시 시스템용 음향방출센서의 개발 (Development of Fiber-Optic AE Sensor for On-Line Monitoring System)

  • 남재영;정재현;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2891-2898
    • /
    • 2000
  • The objective of this paper is to develop a fiber-optic acoustic emission(AE) sensor applicable to on-line monitoring systems which is suitable for long-distance signal transmission. An AE sensor was developed by use of a fiber-optic cantilever and an extrinsic Fabry-Perot interferometer(EEPI). The efficiency of signal processing was improved by driving the high frequency AE signals into the low frequency ones. In order to verify the developed sensor, the tensile and the pencil lead fracture(PLF) tests were performed including the experiment showing the Kaiser effect. Form tests, AE signals were successfully detected in the elastic-plastic deformation range, especially higher signals at the crack propagation. The developed sensor was expected to be used for an on-line monitoring of crack propagation in mechanical system.

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.

미캐니컬 씰의 안전운용 감시를 위한 최적 계측인자 (Optimum Monitoring Parameters for the Safety of Mechanical Seals)

  • Soon-Jae Lim;Man-Yong Choi
    • 한국안전학회지
    • /
    • 제12권4호
    • /
    • pp.214-219
    • /
    • 1997
  • 미캐니컬 씰은 회전축에 장착되는 밀봉장치의 하나로써 많은 산업 현장에서 사용되고 있다. 산업발전과 더불어 미캐니컬 씰의 고장 즉, 밀봉장치에서의 누설, 크랙, 파손, 과대마멸 등과 같은 이상 상태는 대규모 공장의 생산라인을 정지시키거나 심각한 환경오염을 유발시키는 등 경제, 사회적 문제를 야기시키고 있다. 미캐니컬 씰 밀봉면의 미끄럼 운동상태를 인지하고, 미캐니컬 씰의 고장에 대한 감시인자를 도출하기 위하여 미끄럼 마멸실험을 수행하였다. 미캐니컬 씰의 회전속도를 1750 rpm 으로 하여, 매 10 분 마다 미캐니컬 씰 밀봉면의 마멸상태를 광학현미경으로 관찰하였고, 실험동안에 미캐니컬 씰의 미끄럼 운동면에서의 음향방출(AE : Acoustic Emission), 토크, 온도, 등을 측정하였으며, 실시간으로 토크 신호의 주파수 분석을 실시하였다. 각 실험의 초기를 제외하고는 전 구간에서 음향방출 신호의 크기와 토크 값의 변화 경향이 대체로 유사한 경향을 보였다. 정상상태에서는 음향방출, 토크 및 온도가 안정된 상태를 유지하였으나, 이상상태에서는 음향방출의 크기와 토크값이 안정된 상태를 유지하지 못하였으며, 온도는 이상상태 때 급상승하는 경향을 보였다. 토크 값과 온도의 변화가 미캐니컬 씰의 고장에 대한 장기적 감시인자로 적절하다고 생각되며, 미캐니컬 씰의 순간적인 이상상태를 확인하거나 미캐니컬 씰의 운동상태를 인지하는 데는 실효치 전압 상태의 음향방출 신호가 적당하다고 생각된다. 온도는 이상상태 감시 시스템에서 시스템의 신뢰도를 증진시키는 병렬요소로써 활용될 수 있을 것이다.장 큰 결합활성도(binding activity)를 나타내며, 또한 Hyphantria cunea와 같은 나비목의 다른 종의 lipophorin도 인식하는 것으로 나타났다. 따라서 리포포린에 결합하는 수용체의 구조적 또는 기능적 요소는 같은 목내의 종간에 보존되는 것으로 생각된다.과 성충의 생존율은 온도에 따른 계통간 차이는 없었다. 내적자연증가율( $r_{m}$ )은 S계통이 $R_{L}$, $R_{F}$계통보다 $25^{\circ}C$에서는 낮았지만 2$0^{\circ}C$와 3$0^{\circ}C$에서는 높았다. 특히 3$0^{\circ}C$에서는 S계통이 현저히 높았다. 결론적으로 dicofol 저항성계통( $R_{L}$, $R_{F}$)은 저온(2$0^{\circ}C$)과 고온(3$0^{\circ}C$)에서 감수성계통에 비해 생물학적 적응력이 떨어질 것으로 생각된다.력이 떨어질 것으로 생각된다.력이 떨어질 것으로 생각된다.해도 될 것이다. 쐐기 투과율을 정하는 위치가 d$_{max}$ 나 공기중이라면 민조사변에 대한 출력계수를 적용할 수 있지만 다른 깊이에서는 쐐기필터 각각에 대한 출력계수를 또는 조사면크기에 따른 쐐기투과율을 적용해야 할 것이다. 39.2%가 이유 설명 후 사주지 않는 것으로 나타났으며 23.2%가 다음으로 미룬다, 무조건

  • PDF

AE센서에 의한 다중 절삭트러블 감시에 관한 연구 (A Study on the Monitoring of multi-Cutting Troubles Using an AE Sensor)

  • 원종식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.39-45
    • /
    • 2000
  • This paper describes the fundamental investigations on the in-process monitoring techniques focused on Acoustic Emission(AE) based on analytical method. Experiments were conducted on a CNC lathe using conventional carbide insert tools under various cutting conditions. As the result of this study a suggestion is given about the multi-purpose use of AE-signals detected with a single sensor for the monitoring of tool wear, built-up edge and chatter vibration in turning process.

  • PDF

음향방출기법을 이용한 열교환기 누설검출시스템 개발 (Development of Leak Detection System of Heat Exchanger using Acoustic Emission Technique)

  • 이민래;이준현
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.864-871
    • /
    • 2002
  • Acoustic emission(AE) technique has been applied to not only mechanical property testing but also on-line monitoring of the entire structure or a limit zone only. Although several AE devices have already been developed for on-line monitoring, the price of these systems is very high and it is difficult for the field to apply yet. In this study, we developed a specially designed PC-based leak detection system using A/D board. In this paper, AE technique has been applied to detect leak for heat exchanger by analyzing the characteristics of signal obtained from leak. It was confirmed that the characteristics of the signal generated by the turbulence of gas in the heat exchanger is narrow band signal having between 130-250kHz. Generally, the amplitude of leak signal is increased as the leak size increasing, but showed no significant change at frequency characteristic. Leak source location can be found by determining for the paint of highest signal amplitude by comparing with several fixed sensors. In this paper, AE results are compared with the PC-based leak detection system using A/D board.

음향방출을 이용한 가공중의 엔드밀 파손 검출에 관한 연구 (A Study on the In-process Detection of Fracture of Endmill by Acoustic Emission Measurement)

  • 윤종학;강명순
    • 한국정밀공학회지
    • /
    • 제7권3호
    • /
    • pp.75-82
    • /
    • 1990
  • Automatic monitoring of the cutting conditions is one of the most improtant technologies in machining. In this study, the feasibility in applying acoustic emission(AE) signals for the in-process detection of endmill wear and fracture has been investigated by performing experimental test on the NC vertical milling machine with SM45C for specimen. As the results of detecting and analyzing AE signals on various cutting conditions, the followings have confirmed. (1) The RMS value of acoustic emission is related sensitively to the cutting velocity, but is not affected largely by feed rate. (2) The burst type AE signals of high level have been observed when removing chips distorderly and discontinuously. (3) When the RMS value grows up rapidly due to the increase of wear the endmill are generally broken or fractured, but when the endmills fracture at the conditions of smooth chip-flow or built-up-edge(BUE) occurred frequently, the rapid change of the RMS arenot found. And it is expected that this technigue will be quite useful for in-process sensing of tool wear and fracture.

  • PDF

음향방출을 이용한 mortar 재료의 미시적 파괴거동에 관한 연구 (A Study on Microscopic Fractrue Behavior of Mortar Using Acoustic Emission)

  • 이준현;이진경;장일영;윤동진
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.203-211
    • /
    • 1998
  • 고체내부의 미소파괴시 발생하는 탄성파 방출을 이용하는 음향방출기법은 구조물 또는 재료 내부의 미시적 변형기구를 이해하는데 매우 유익한 수단으로 최근 각 분야에서 다양하게 응용되고 있다. 따라서 본 연구에서는 모르타르 부재의 휨재하 시험시 부재 내부에 발생하는 미시적 손상거동 및 파괴특성을 시험시 연속적으로 모니터링한 AE 신호특성으로부터 평가하였다. 나아가 삼각법을 이용한 2차원 AE 발생원 위치추정으로부터 시험체 노치선단 주변에 대한 AE 발생원 위치를 명확히 하였으며 이들 결과로부터 미소균열의 성장 거동을 연속적으로 모니터링 하였다.