• Title/Summary/Keyword: Acoustic monitoring

Search Result 482, Processing Time 0.028 seconds

The effect of dental scaling noise during intravenous sedation on acoustic respiration rate (RRaTM)

  • Kim, Jung Ho;Chi, Seong In;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 2018
  • Background: Respiration monitoring is necessary during sedation for dental treatment. Recently, acoustic respiration rate ($RRa^{TM}$), an acoustics-based respiration monitoring method, has been used in addition to auscultation or capnography. The accuracy of this method may be compromised in an environment with excessive noise. This study evaluated whether noise from the ultrasonic scaler affects the performance of RRa in respiratory rate measurement. Methods: We analyzed data from 49 volunteers who underwent scaling under intravenous sedation. Clinical tests were divided into preparation, sedation, and scaling periods; respiratory rate was measured at 2-s intervals for 3 min in each period. Missing values ratios of the RRa during each period were measuerd; correlation analysis and Bland-Altman analysis were performed on respiratory rates measured by RRa and capnogram. Results: Respective missing values ratio from RRa were 5.62%, 8.03%, and 23.95% in the preparation, sedation, and scaling periods, indicating an increased missing values ratio in the scaling period (P < 0.001). Correlation coefficients of the respiratory rate, measured with two different methods, were 0.692, 0.677, and 0.562 in each respective period. Mean capnography-RRa biases in Bland-Altman analyses were -0.03, -0.27, and -0.61 in each respective period (P < 0.001); limits of agreement were -4.84-4.45, -4.89-4.15, and -6.18-4.95 (P < 0.001). Conclusions: The probability of missing respiratory rate values was higher during scaling when RRa was used for measurement. Therefore, the use of RRa alone for respiration monitoring during ultrasonic scaling may not be safe.

REAL-TIME QUALITY EVALUATION OF FRICTION WELDING OF MACHINE COMPONENTS BY ACOUSTIC EMISSION (음향방출법(AE)에 의한 기계요소재의 마찰용접 품질 실시간 평가)

  • SAE-KYOO OH
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.3-20
    • /
    • 1995
  • Development of Real-Time Quality Evaluation of Friction Welding by Acousitc Emission : Report 1 ABSTRACT : According as the friction welding has been increasingly applied in manufacturing various machine components because of its significant economic and technical advantages, one of the important concerns is the reliable quality monitoring method for a good weld quality with both joint strength and toughness in the process of its production. However no reliable nondestructive test method is available at present to determine the weld quality particularly in process of production. So this paper presents an experimental examination and quantitative analysis for the real-time evaluation of friction weld quality by acoustic emission, as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was confirmed, through this study, that AE techniques can be reliably applied to evaluating the friction weld qualify with 100% joint strength, as the cumulative AE counts occurring during welding period were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds. Real-Time Evaluation of Automatic Production Quality Control for Friction Welding Machine : Report 2 Abstract : Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

  • PDF

Application of Acoustic Emission Technique for On-Line Monitoring of Quench in Racetrack Superconducting Coil at Cryogenic Environment (음향방출기법을 이용한 극저온 환경하에서 초전도 계자코일의 퀀칭탐지 적용에 관한 연구)

  • Lee, Min-Rae;Gwon, Yeong-Gil;Lee, Jun-Hyeon;Son, Myeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.858-865
    • /
    • 2000
  • It is well recently recognized that quench is one of the serious problems for the integrity of superconducting magnets, which is mainly attribute to the rapid temperature rising in the magnet due to some extrinsic factors such as conductor motion, crack initiation etc. In order to apply acoustic emission(AE)echnique effectively to monitor and diagnose superconducting magnets, it is essential to identify the sources of acoustic emission. In this paper, an acoustic emission technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2K. For these purposes special attention was paid to detect AE signals associated with the quench of superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. In addition, the source location of quench in superconducting magnet was also discussed on the basis of correlation between magnet voltage and AE energy.

Location of Acoustic Emission Sources in a PSC Beam using Least Squares (최소제곱법에 의한 PSC보의 음향방출파원 위치결정)

  • Lee Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.271-279
    • /
    • 2006
  • Acoustic Emission (AE) technology is an effective nondestructive testing for continuous monitoring of defect formation and failures in structural materials. This paper presents a source location model using Acoustic Emission (AE) sensors in a Pre-Stressed Concrete (PSC) beam and the evaluation of the model was performed through lab experiments. 54 AE events were made on the surface of the 5m-PSC beam using a Schmidt Hammer and arrival times were measured with 7AE sensors. The source location f3r each event was estimated using least squares. The results were compared with actual positions and the RMSE (Root Mean Square Errors) was about 2cm.

Identification of Damage Characteristics Due to Cracking of Concrete Structures Using Acoustic Emission (음향방출 특성을 이용한 콘크리트 부재종류 및 하중상태에 따른 균열손상 연구)

  • 오병환;김응재;김광수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.107-116
    • /
    • 1999
  • The damage in concrete structures generally starts with microcracking and thus it is important to find and explore these microcracks in concrete in order to ensure appropriate safety and serviceability. The purpose of the present study is to identify the damage characteristics of concrete structures due to cracking by employing the acoustic emission techniques. A comprehensive experimental study has been done. The cracking damage under tensile and flexural loadings have been identified and the bond damage between steel and concrete have been also characterized. It is seen that the amplitudes and energy level of Acoustic Emission(AE) events are found to be relatively small for bond cracking damages and large for tensile cracking damages. The characteristic equations of the AE events for various cracking damages have been proposed based on the present test data. The internal microcracks are progressively developed ahead of a visible actual crack and the present study clearly exhibits these damage mechanism for various types of cracking in concrete. The present study provides useful data which can be used to identify the various types of cracking damages in concrete structures. This will allow efficient maintenance of concrete structures through monitoring of internal cracking based on acoustic emission.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

Classification of bearded seals signal based on convolutional neural network (Convolutional neural network 기법을 이용한 턱수염물범 신호 판별)

  • Kim, Ji Seop;Yoon, Young Geul;Han, Dong-Gyun;La, Hyoung Sul;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2022
  • Several studies using Convolutional Neural Network (CNN) have been conducted to detect and classify the sounds of marine mammals in underwater acoustic data collected through passive acoustic monitoring. In this study, the possibility of automatic classification of bearded seal sounds was confirmed using a CNN model based on the underwater acoustic spectrogram images collected from August 2017 to August 2018 in East Siberian Sea. When only the clear seal sound was used as training dataset, overfitting due to memorization was occurred. By evaluating the entire training data by replacing some training data with data containing noise, it was confirmed that overfitting was prevented as the model was generalized more than before with accuracy (0.9743), precision (0.9783), recall (0.9520). As a result, the performance of the classification model for bearded seals signal has improved when the noise was included in the training data.

A Presentation in the Nuclear Steam Supply System Integrity Monitoring System (NIMS) for Yonggwang Nuclear Power Plant, Units 3&4 (영광원자력발전소 3,4호기 핵증기 공급계통(NSSS)의 종합건전성 감시계통의 신기술 소개)

  • 장우현;최찬덕;김성호;한상준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.81-86
    • /
    • 1992
  • 원자력발전소 1차 계통 내의 건전성 감시를 위한 설비로는 음향누설 감시계 통(Acoustic Leak Monitoring System: ALMS), 금속파편 감시계통(Loose Parts Monitoring System: LPMS) 및 원자로내부구조물 진동감시계통 (Internals Vibration Monitoring System: IVMS)등이 있다. 현재, 국내의 여 러 원전에는 이들중 일부 계통들이 선택적으로 설치되어 운전중이며, 영광 3,4호기에서는 국내 최초로 이들 3개의 계통을 종합한 핵증기공급계통 건전 성감시계통(Nuclear Steam Supply System Integrity Monitoring System: NIMS)을 설계하였다. 특히, 영광 3,4호기 NIMS에서는 각 계통에 의해 감지 된 1차 계통 내의 이상상태를 하나의 분석컴퓨터(Analysis Computer)를 사 용하여 해석하는 종합결함 탐지해석 기법을 도입하였다.

  • PDF

Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves

  • Bezdek, M.;Joseph, K.;Tittmann, B.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.241-262
    • /
    • 2012
  • Some applications require structural health monitoring in inaccessible components. This paper presents a technique useful for Structural Health Monitoring of double wall structures, such as double wall steam pipes and double wall pressure vessels separated from an ultrasonic transducer by three layers. Detection has been demonstrated at distances in excess of one meter for a fixed transducer. The case presented here is for one of the layers, the middle layer, being a fluid. For certain transducer configurations the wave propagating in the fluid is a wave with low velocity and attenuation. The paper presents a model based on wave theory and finite element simulation; the experimental set-up and observations, and comparison between theory and experiment. The results provide a description of the technique, understanding of the phenomenon and its possible applications in Structural Health Monitoring.