• Title/Summary/Keyword: Acoustic holography

Search Result 74, Processing Time 0.018 seconds

A method to find the position of fault in a moving vehicle using microphone arrays (마이크로폰 어레이를 이용하여 차량 하부에서 발생한 결함의 위치를 찾아내는 방법)

  • Kim, Yang-Hann;Jeon, Jong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.144-151
    • /
    • 2006
  • Sound generated from a moving vehicle often carries information on the condition of vehicle, for example, whether it has faults or not, where the fault exists. The latter is possible especially by MFAH(moving frame acoustic holography) and beamforming method. MFAH is applicable to the sound source of pure tone or narrow band noise. For the beamforming method, we have to know what kind of wave the sound source radiates, for example, plane wave or spherical wave. That is, whether the above methods are applicable depends on the characteristics of sound source. To apply these methods to the fault detection, we have to know the characteristics of wave from faults. In this research, a machine diagnosis technique based on the above holographic approaches is introduced to find the position of faults. The signal due to faults is modeled based on the fact that the faults radiate impulsive noise, and analyzed in time and frequency domain. The way how MFAH and beamforming method can be used is introduced to find the position of source.

  • PDF

The Selection of Measurement Positions for BEM Based NAH Using a Non-conformal Hologram to Reduce the Reconstruction Error

  • Oey, Agustinus;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1018-1021
    • /
    • 2007
  • This paper explores the use of BEM based NAH to reconstruct the surface vibration of a plate in a rectangular finite cavity, in which the distances between sensors and the nearest points on the source surface are not equal. In such circumstances, different degree of information on propagating and non-propagating wave components will be detected by sensors at different positions, as well as the influence of measurement noise will vary significantly from the nearest points of measurement to the farthest ones. On the other hand, the condition number of the vibro-acoustic transfer function matrix relating normal surface velocities and field pressures will becomes high, numerically indicating an increase of linear dependency between rows of transfer function matrix. The combination of poor measurement and high condition number will result inaccurate reconstruction. Therefore, one approach to be investigated in this work is to select the measurement positions in such ways that reduce measurement redundancy, as it indicated by the condition number. The improvement is found to be significant in the numerical simulations utilizing two different criterions, spanning from over-determined to under-determined cases, and in the validation experiment.

  • PDF

Measurement of Tire Structural Vibration Noise Using Spatial Transformation of Sound Field Technique (음장의 공간적 변환기법을 이용한 타이어 구조 진동 소음 측정)

  • Kim, Byoung-Sam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.11-19
    • /
    • 1995
  • The Interaction between tire and road is responsible for the excited vibration of the tire, and It is also important for the sound radiation. In this paper. measurement of tire structural vibration noise from a chassis dynamometer using Spatial Transformation of Sound Field(STSF) technique is studied. STSF involving a scan that uses an array of transducers over a planar surface close to the source is under investigation. From cross spectra measurement during the scan, a principal component representing the sound field is extracted. Any power descriptor of the near field can then be investigated by means of near-field acoustic holography, while the distant field can be determined by application of Helmholtz integral equation. The results of the measurement were used to obtain the radiation sound pattern from the center line of the tire, and to locate the radiation sound generating regions in the vicinity of the tire.

  • PDF

Can We Hear the Shape of a Noise Source\ulcorner (소음원의 모양을 들어서 상상할 수 있을까\ulcorner)

  • Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.586-603
    • /
    • 2004
  • One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"