• Title/Summary/Keyword: Acoustic detection

Search Result 700, Processing Time 0.031 seconds

High Resolution Borehole Acoustic Scanner (Televiewer) (고분해능 텔레뷰어 검층기법의 기능)

  • ;Schepers,R
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.277-288
    • /
    • 1995
  • Fracture detection has always been very attractive to the log, because it is important in many of our prospecting activities, e.g. in understanding the underground rock formation and also the fluid flow as a high permeability path. This paper demonstrates the use of high resolution borehole acoustic scanner for the detection of fractures. The tool, known as Televiewer, is the first acoustic borehole imaging system to use a focussed beam. The acoustic beams generated by a single transducer are sent toward the borehole wall, scanning the wall in a tight helix as the tool moves along the borehole. The amplitudes and travel times of the reflected signals are then measured, which produces the corresponding images. The highly resolved amplitude image allows to recognize various size of fractures and in addition to derive the rock strength from the image. Meanwhile, the travel time image itself can be directly converted to a precise caliper image, providing detailed information of deviations of the borehole shape. It also allows correction of and explanations for amplitude variations. Field measurements were carried Out at the Cheongyang study sites in Korea to illustrate the efficiency of the televiewer log.

  • PDF

A Study on the Leakage Characteristic Evaluation of High Temperature and Pressure Pipeline at Nuclear Power Plants Using the Acoustic Emission Technique (음향방출기법을 이용한 원전 고온 고압 배관의 누설 특성 평가에 관한 연구)

  • Kim, Young-Hoon;Kim, Jin-Hyun;Song, Bong-Min;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2009
  • An acoustic leak monitoring system(ALMS) using acoustic emission(AE) technique was applied for leakage detection of nuclear power plant's pipeline which is operated in high temperature and pressure condition. Since this system only monitors the existence of leak using the root mean square(RMS) value of raw signal from AE sensor, the difficulty occurs when the characteristics of leak size and shape need to be evaluated. In this study, dual monitoring system using AE sensor and accelerometer was introduced in order to solve this problem. In addition, artificial neural network(ANN) with Levenberg.Marquardt(LM) training algorithm was also applied due to rapid training rate and gave the reliable classification performance. The input parameters of this ANN were extracted from varying signal received from experimental conditions such as the fluid pressure inside pipe, the shape and size of the leak area. Additional experiments were also carried out and with different objective which is to study the generation and characteristic of lamb and surface wave according to the pipe thickness.

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

Automatic Eggshell Crack Detection System for Egg Grading (계란 등급판정을 위한 파각란 자동 검사 시스템)

  • Choi, Wan-Kyu;Lee, Kang-Jin;Son, Jae-Ryong;Kang, Suk-Won;Lee, Ho-Young
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Egg grading is determined by exterior and interior quality. Among the evaluation methods for the egg quality, a candling method is common to identify eggs with cracked shells and interior defects. But this method is time-consuming and laborious. In addition, practically, it is challenging to detect hairline and micro cracks. In this study, an on-line inspection system based on acoustic resonance frequency analysis was developed to detect hairline cracks on eggshells. A roller conveyor was used to transfer eggs along one lane to the impact position where each of eggs rotated by the roller was excited with an impact device at four different locations on the eggshell equator. The impact device was consisted of a plastic hammer and a rotary solenoid. The acoustic response of the egg to the impact was measured with a small condenser microphone at the same position as the impact device was installed. Two acoustic parameters, correlation coefficient for normalized power spectra and standard deviation of peak resonant frequencies, were used to detect cracked eggs. Intact eggs showed relatively high correlations among the four normalized power spectra and low standard deviations of the four peak resonant frequencies. On the other hand, cracked eggs showed low correlations and high standard deviations as compared to the intact. This method allowed a crack detection rate of 97.6%.

Collaborative Obstacle Avoidance Method of Surface and Aerial Drones based on Acoustic Information and Optical Image (음향정보 및 광학영상 기반의 수상 및 공중 드론의 협력적 장애물회피 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1081-1087
    • /
    • 2015
  • Recently, the researches of aerial drones are actively executed in various areas, the researches of surface drones and underwater drones are also executed in marine areas. In case of surface drones, they essentially utilize acoustic information by the sonar and consequently have the local information in the obstacle avoidance as the sonar has the limitations due to the beam width and detection range. In order to overcome this, more global method that utilizes optical images by the camera is required. Related to this, the aerial drone with the camera is desirable as the obstacle detection of the surface drone with the camera is impossible in case of the existence of clutters. However, the dynamic-floating aerial drone is not desirable for the long-term operation as its power consumption is high. To solve this problem, a collaborative obstacle avoidance method based on the acoustic information by the sonar of the surface drone and the optical image by the camera of the static-floating aerial drone is proposed. To verify the performance of the proposed method, the collaborative obstacle avoidances of a MSD(Micro Surface Drone) with an OAS(Obstacle Avoidance Sonar) and a BMAD(Balloon-based Micro Aerial Drone) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Development of a Acoustic Acquisition Prototype device and System Modules for Fire Detection in the Underground Utility Tunnel (지하 공동구 화재재난 감지를 위한 음향수집 프로토타입 장치 및 시스템 모듈 개발)

  • Lee, Byung-Jin;Park, Chul-Woo;Lee, Mi-Suk;Jung, Woo-Sug
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.7-15
    • /
    • 2022
  • Since the direct and indirect damage caused by the fire in the underground utility tunnel will cause great damage to society as a whole, it is necessary to make efforts to prevent and control it in advance. The most of the fires that occur in cables are caused by short circuits, earth leakage, ignition due to over-current, overheating of conductor connections, and ignition due to sparks caused by breakdown of insulators. In order to find the cause of fire at an early stage due to the characteristics of the underground utility tunnel and to prevent disasters and safety accidents, we are constantly managing it with a detection system using image analysis and making efforts. Among them, a case of developing a fire detection system using CCTV-based deep learning image analysis technology has been reported. However, CCTV needs to be supplemented because there are blind spots. Therefore, we would like to develop a high-performance acoustic-based deep learning model that can prevent fire by detecting the spark sound before spark occurs. In this study, we propose a method that can collect sound in underground utility tunnel environments using microphone sensor through development and experiment of prototype module. After arranging an acoustic sensor in the underground utility tunnel with a lot of condensation, it verifies whether data can be collected in real time without malfunction.

Acoustic Emission (AE) Technology-based Leak Detection System Using Macro-fiber Composite (MFC) Sensor (Macro fiber composite (MFC) 센서를 이용한 음향방출 기술 기반 배관 누수 감지 시스템)

  • Jaehyun Park;Si-Maek Lee;Beom-Joo Lee;Seon Ju Kim;Hyeong-Min Yoo
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.429-434
    • /
    • 2023
  • In this study, aimed at improving the existing acoustic emission sensor for real time monitoring, a macro-fiber composite (MFC) transducer was employed as the acoustic emission sensor in the gas leak detection system. Prior to implementation, structural analysis was conducted to optimize the MFC's design. Consequently, the flexibility of the MFC facilitated excellent adherence to curved pipes, enabling the reception of acoustic emission (AE) signals without complications. Analysis of AE signals revealed substantial variations in parameter values for both high-pressure and low-pressure leaks. Notably, in the parameters of the Fast Fourier Transform (FFT) graph, the change amounted to 120% to 626% for high-pressure leaks compared to the case without leaks, and approximately 9% to 22% for low-pressure leaks. Furthermore, depending on the distance from the leak site, the magnitude of change in parameters tended to decrease as the distance increased. As the results, in the future, not only will it be possible to detect a leak by detecting the amount of parameter change in the future, but it will also be possible to identify the location of the leak from the amount of change.

Speech Activity Decision with Lip Movement Image Signals (입술움직임 영상신호를 고려한 음성존재 검출)

  • Park, Jun;Lee, Young-Jik;Kim, Eung-Kyeu;Lee, Soo-Jong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2007
  • This paper describes an attempt to prevent the external acoustic noise from being misrecognized as the speech recognition target. For this, in the speech activity detection process for the speech recognition, it confirmed besides the acoustic energy to the lip movement image signal of a speaker. First of all, the successive images are obtained through the image camera for PC. The lip movement whether or not is discriminated. And the lip movement image signal data is stored in the shared memory and shares with the recognition process. In the meantime, in the speech activity detection Process which is the preprocess phase of the speech recognition. by conforming data stored in the shared memory the acoustic energy whether or not by the speech of a speaker is verified. The speech recognition processor and the image processor were connected and was experimented successfully. Then, it confirmed to be normal progression to the output of the speech recognition result if faced the image camera and spoke. On the other hand. it confirmed not to output of the speech recognition result if did not face the image camera and spoke. That is, if the lip movement image is not identified although the acoustic energy is inputted. it regards as the acoustic noise.

Voice Activity Detection using Motion and Variation of Intensity in The Mouth Region (입술 영역의 움직임과 밝기 변화를 이용한 음성구간 검출 알고리즘 개발)

  • Kim, Gi-Bak;Ryu, Je-Woong;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.519-528
    • /
    • 2012
  • Voice activity detection (VAD) is generally conducted by extracting features from the acoustic signal and a decision rule. The performance of such VAD algorithms driven by the input acoustic signal highly depends on the acoustic noise. When video signals are available as well, the performance of VAD can be enhanced by using the visual information which is not affected by the acoustic noise. Previous visual VAD algorithms usually use single visual feature to detect the lip activity, such as active appearance models, optical flow or intensity variation. Based on the analysis of the weakness of each feature, we propose to combine intensity change measure and the optical flow in the mouth region, which can compensate for each other's weakness. In order to minimize the computational complexity, we develop simple measures that avoid statistical estimation or modeling. Specifically, the optical flow is the averaged motion vector of some grid regions and the intensity variation is detected by simple thresholding. To extract the mouth region, we propose a simple algorithm which first detects two eyes and uses the profile of intensity to detect the center of mouth. Experiments show that the proposed combination of two simple measures show higher detection rates for the given false positive rate than the methods that use a single feature.

Optimization of State-Based Real-Time Speech Endpoint Detection Algorithm (상태변수 기반의 실시간 음성검출 알고리즘의 최적화)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.2 no.4
    • /
    • pp.137-143
    • /
    • 2010
  • In this paper, a speech endpoint detection algorithm is proposed. The proposed algorithm is a kind of state transition-based ones for speech detection. To reject short-duration acoustic pulses which can be considered noises, it utilizes duration information of all detected pulses. For the optimization of parameters related with pulse lengths and energy threshold to detect speech intervals, an exhaustive search scheme is adopted while speech recognition rates are used as its performance index. Experimental results show that the proposed algorithm outperforms the baseline state-based endpoint detection algorithm. At 5 dB input SNR for the beamforming input, the word recognition accuracies of its outputs were 78.5% for human voice noises and 81.1% for music noises.

  • PDF