• 제목/요약/키워드: Acoustic Resonance

Search Result 431, Processing Time 0.024 seconds

Reduction of Acoustic Resonance Phenomena in Pulse Start MetalHalide Lamp (MH200W) (고효율 펄스스타트 메탈핼라이드램프(MH200W)의 음향공명현상감소)

  • 김기정
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • MetalHalid lamps have good efficiency, good color rendition and good focusing capability. But the shortcoming of metalhalid lamps is blown as acoustic resonance phenomena in the arc tube. Such acoustic resonance produce annoying fluctuations in the intensity and distribution of the emitted light, they can raise the voltage to the point where the arc is extinguished and they can move the arc close enough to the wall to cause local overheating and tube cracking. The objective of this research is to reduce acoustic resonance in the arc tube of the Pulse Start MetaIHaide lamp(MH200[W]). To reduce the acoustic resonance phenomena the electronic ballast was designed for high frequency operation with the constant frequency sinusoidal wave of 89[kHz] in the 84.6[kHz]∼94.2[kHz] range. Experimental results show that the acoustic resonance phenomena are not in the arc tube of Pulse Start MetalHalide lamp (MH200[W]) .

  • PDF

The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL (음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan

  • Tsujimoto, Yoshinobu;Tanaka, Hiroshi;Doerfler, Peter;Yonezawa, Koichi;Suzuki, Takayuki;Makikawa, Keisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.75-86
    • /
    • 2013
  • The effects of acoustic resonance and volute geometry on phase resonance are studied theoretically and experimentally using a centrifugal fan. One dimensional theoretical model is developed taking account of the reflection from the discharge pipe end. It was found that the phase resonance occurs, even with the effects of acoustic resonance, when the rotational speed of rotor-stator interaction pattern agrees with the sound velocity. This was confirmed by experiments with and without a silencer at the discharge pipe exit. The pressure wave measurements showed that there are certain effects of the cross-sectional area change of the volute which is neglected in the one dimensional model. To clarify the effects of area change, experiments were carried out by using a ring volute with a constant area. It was demonstrated that the phase resonance occurs for both interaction modes travelling towards/away from the volute. The amplitude of travelling wave grows towards the volute exit for the modes rotating towards the volute exit, in the same direction as the impeller. However, a standing wave is developed in the volute for the modes rotating away from the volute exit in the opposite direction as the impeller, as a result of the interaction of a growing wave while travelling towards the tongue and a reflected wave away from the tongue.

Development of a Piezoelectric Micro-machined Ultrasonic Transducer for Photoacoustic Imaging that Accounts for the Added Mass Effect of the Acoustic Medium (음향 매질의 추가질량 효과를 고려한 광음향 영상용 초소형 압전 기반 초음파 트랜스듀서의 개발)

  • Ahn, Hongmin;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • Typically, photoacoustic images are obtained in water or gelatin because the impedance of these mediums is similar to that of the human body. However, these acoustic mediums can have an additional mass effect that changes the resonance frequency of the transducer. The acoustic radiation impedance in air is negligible because it is very small compared to that of the transducer. However, the high acoustic impedance of mediums such as the human body and water is quite large compared to that of air, making it difficult to ignore. Specifically, in a case where the equivalent mass is very small, such as with a micro-machined ultrasound transducer, the additional mass effects of the acoustic medium should be considered for an accurate resonance frequency design. In this study, a piezoelectric micro-machined ultrasonic transducer (pMUT) was designed to have a resonance frequency of 10 MHz in the acoustic medium of water, which has similar impedance as the human body. At that time, the resonance frequency of the pMUT in air was calculated at 15.2 MHz. When measuring the center displacement of the manufactured pMUT using a laser vibrometer, the resonance frequencies were measured as 14.3-15.1 MHz, which is consistent with the finite element method (FEM) simulation results. Finally, photoacoustic images of human hair samples were successfully obtained using the fabricated pMUT.

Analysis of Acoustic Excitation Effect on Lean Blowoff in Premixed Bluff Body Flames (예혼합 보염기 화염의 희박 화염 날림에 음향 가진이 미치는 영향에 관한 연구)

  • Jeong, Chanyeong;Hwang, Jeongjae;Yoon, Jisu;Kim, Taesung;Shin, Jeoik;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.149-151
    • /
    • 2014
  • The blowoff phenomenon was experimentally investigated in a ducted combustor according to the acoustic excitation. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. A resonance phenomenon occurs when the excitation frequency approaches the harmonic frequency of the combustor. The resonance increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer. Consequently, the mixture velocity exceeds the burning velocity and the blowoff occurs at the higher equivalence ratio.

  • PDF

Experiments on the Influence of the Air Cavity Resonance on the Structural Vibration Modes in Radial Tire (승용차용 레이디얼 타이어에서 공기공동진동형이 구조진동형에 미치는 영향에 관한 실험)

  • Kim, Yong-Woo;Jeong, Kyoung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.44-49
    • /
    • 2007
  • It is well known that the acoustic cavity inside the tire-wheel assembly contributes to vehicle interior noise. In this paper, we have performed acoustic and structural modal testings to investigate the influences of the acoustic cavity resonance on structural vibration characteristics for the tire in free-suspension and for the loaded tire. The testings have given us some findings, which are reported in this paper.

An Assessment of Elastic and Damping Material Properties of PVC/MBS by an Acoustic Resonance Method (음향공진법을 이용한 PVC/MBS의 탄성 및 감쇠 특성 평가)

  • 박명균;박세만;최영식;박상규
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.10
    • /
    • pp.766-772
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic and damping properties of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests In this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease while the damping capacity improve when MBS rubber was added in the range up to 9 phr.

Study on Acoustic Resonance of Air-Conditioner Fan BLDC Motor (에어컨 팬 BLDC 전동기의 음향공진에 관한 연구)

  • Lee, Hong-Joo;Kim, Kwang-Suk;Kwon, Joong-Hak;Bang, Ki-Chang;Hwang, Sang-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.212-217
    • /
    • 2008
  • Acoustic noises generated during motor operation in mechanical system are from electromagnetic, mechanical, aerodynamic, and electrical sources. For identification of mechanical noise origins, misalignment, unbalance, fan shape, resonance, and vibration modes have been extensively considered to describe noise behavior. An experiment-based approach as well as a mathematical approach needs to be adopted for a realistic study into noise and vibration of the motor, because motor noise characteristics differ from type to type due to various noise sources. In this paper, a brushless DC motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  • PDF

Reduction of Flow-Induced Vibration in the Heat Exchanger (열교환기에서의 유동유발 진동 저감)

  • 장한기;김승한;이재현;양정렬
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1200-1209
    • /
    • 1999
  • This paper reports a peculiar example of flow-induced vibration in a very large plant and the whole procedure of reducing the vibration. During the operation of flue gas desurfurization unit of the thermal power plant, serious vibration was dtected at all around the plant. The worst vibration was recorded on the heat exchanger surface, which weighed 180 tones, as 17.8 m/$s^2$ in vibration amplitude at 34 Hz. To identify the vibration, frequency analysis on the response vibration as well as on the expected excitation forces and the system resonance was executed. This investigation revealed that the cause of the vibration was vortex shedding from the circular pipes in the heat exchanger. Vortices from the pipes excited acoustic resonance in the heat exchanger room, which, in turn, made the structure vibrate. Through inserting the baffles between the pipes, which had an effect of cutting the acoustic wave at resonance frequency, the vibration was eliminated dramatically.

  • PDF

Feasibility Study on Surface Microcrack Detection of the Steel Wire Rods Using Electromagnetic Acoustic Resonance (전자기 음향 공진을 이용한 강선의 표면 미세 결함 탐상 타당성 연구)

  • Heo, Taehoon;Cho, Seung Hyun;Ahn, Bongyoung;Lim, Zhong Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • The surface microcrack over a few tens of micrometers is one of severe problems of a steel wire rod to lead to the failure of the final products, so the method to evaluate crack depth has been required to develop. This work investigates the feasibility of electromagnetic acoustic resonance (EMAR) for this problem. EMAR is the method for measurement of resonant features using electromagnetic acoustic transducer (EMAT). Generally, EMAR is sensitive to small variation of the structures and easy to apply it to the industrial field because of the feature of noncontact measurement. Through several EMAR experiments, the change of the resonant frequencies and attenuation in reverberation has been observed. The results confirms that the surface cracks of around 100 micrometer depth can be detected successfully with the present method.