• Title/Summary/Keyword: Acoustic Parameters

Search Result 849, Processing Time 0.025 seconds

How to Express Emotion: Role of Prosody and Voice Quality Parameters (감정 표현 방법: 운율과 음질의 역할)

  • Lee, Sang-Min;Lee, Ho-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.159-166
    • /
    • 2014
  • In this paper, we examine the role of emotional acoustic cues including both prosody and voice quality parameters for the modification of a word sense. For the extraction of prosody parameters and voice quality parameters, we used 60 pieces of speech data spoken by six speakers with five different emotional states. We analyzed eight different emotional acoustic cues, and used a discriminant analysis technique in order to find the dominant sequence of acoustic cues. As a result, we found that anger has a close relation with intensity level and 2nd formant bandwidth range; joy has a relative relation with the position of 2nd and 3rd formant values and intensity level; sadness has a strong relation only with prosody cues such as intensity level and pitch level; and fear has a relation with pitch level and 2nd formant value with its bandwidth range. These findings can be used as the guideline for find-tuning an emotional spoken language generation system, because these distinct sequences of acoustic cues reveal the subtle characteristics of each emotional state.

Multiple Acoustic Cues for Stop Recognition

  • Yun, Weon-Hee
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.3-16
    • /
    • 2003
  • ㆍAcoustic characteristics of stops in speech with contextual variability ㆍPosibility of stop recognition by post processing technique ㆍFurther work - Speech database - Modification of decoder - automatic segmentation of acoustic parameters

  • PDF

Voice quality of normal elderly people after a 3oz water-swallow test: An acoustic analysis (3온스 물 삼킴검사 이후 정상 노년층의 음질 변화: 음향학적 분석)

  • Lee, Sol Hee;Choi, Hong-Shik;Choi, Seong-Hee;Kim, HyangHee
    • Phonetics and Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • The elderly are at increased risk of developing dysphagia due to aging and illnesses. The aim of the current study was to analyze, via an acoustic study, the change in the voice quality of normal elderly people after a 3oz water-swallow test. Subjects included a group of 60 normal elderly people (age: $mean{\pm}SD=76.9{\pm}6.66$) and 60 healthy young adults (age: $mean{\pm}SD=25.1{\pm}2.36$). Every participant produced a five-second /a/ phonation pre- and post-swallowing, and the fractioned two-second sections were analyzed using the MDVP (multi dimensional voice program) analysis. The elderly group demonstrated a post-swallowing increase in the following related acoustic parameters: fundamental frequency, fundamental frequency variation, amplitude-variation, and noise in both two-second sections. However, the younger group showed an increase only in frequency related acoustic parameters (i.e., STD ) in the first two-second section. The significant changes in values in the post-swallowing parameters might indicate temporary irregularities in pitch and amplitude along with higher amounts of noise in the voice. The results could be attributed to water residues in the vocal fold and vocal tract, as well as a deterioration of the motor and sensory functions caused by anatomical and physiological changes that result from aging.

A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels

  • Li, Bin;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.313-327
    • /
    • 2019
  • Damage evolution in the form of void nucleation, propagation and coalescence is the primary cause that is responsible for the ductile failure of microalloyed steels. The Gurson-Tvergaard-Needleman (GTN) damage model has proven to be extremely robust for characterizing the microscopic damage behavior of ductile metals. Nonetheless, successful applications of the model on a given metal type are limited by the correct identification of damage parameters as well as the validation of the calculated void growth rate. The purpose of this study is two-fold. First, we aim to identify the damage parameters of the GTN model for Q345 steel (Chinese code), due to its extensive application in mechanical and civil industries in China. The identification of damage parameters is facilitated by the well-suited response surface methodology, followed by a complete analysis of variance for evaluating the statistical significance of the identified model. Second, taking notched Q345 cylinders as an example, finite element simulations implemented with the identified GTN model are performed in order to analyze their microscopic damage behavior. In particular, the void growth rate predicted from the simulations is successfully correlated with experimentally measured acoustic emissions. The quantitative correlation suggests that during the yielding stage the void growth rate increases linearly with the acoustic emissions, while in the strain-hardening and softening period the dependence becomes an exponential function. The combined experimental and finite element approach provides a means for validating simulated void growth rate against experimental measurements of acoustic emissions in microalloyed steels.

An Empirical Acoustic Impedance Model for the Design of Acoustic Resonator with Extended Neck at a High Pressure Environment (높은 음압에서의 내부 확장관형 음향 공명기의 설계를 위한 실험적 음향 임피던스 모델)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1199-1205
    • /
    • 2012
  • An empirical acoustic impedance model of acoustic resonators with extended neck at a high sound pressure environment is proposed. The acoustic resonator with extended neck into its cavity is appropriate for the launcher fairing application because the length of neck does not increase the total height of the resonator. This enables one to design slim and light acoustic resonators for launch vehicles. The suggested acoustic impedance model considers the incident pressure and geometric variables(the neck length, the perforation ratio and the hole diameter) in terms of non-dimensional variables. Several acoustic resonators with extended neck are manufactured and their wall impedances are measured according to the pre-defined incident pressure levels. Effects of non-dimensional variables on the non-linear acoustic impedance are investigated so that a simple non-linear impedance model for the launcher fairing application can be proposed. It is demonstrated that the estimated acoustic resistance and acoustic length correction show reasonable agreement with the measured ones within the range of design parameters for launcher fairings.

A Correlation Study between Acoustic and EGG Parameters in Ordinary College Students and Classical Singing Students (일반학생과 성악도를 대상으로 Dr. Speech의 음향학적 측정치와 EGG 측정치의 상관관계 비교 연구)

  • 안종복;유재연;권도하;정옥란
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 2002
  • Background and Objective : Classical singing students who have received in systematic voice training appeared distinctive voice characteristics compared to normal people who have not received in systematic voice training. The purpose of this study was to determine the correlation between acoustic parameters and Electroglottography(EGG) parameters in two groups(ordinary college students vs. classical singing students group). Materials and Methods : The 80 ordinary college students and 65 classical singing students participated in this study by utilizing Dr. speech program to obtain acoustic measurements and physiologic measurements simultaneously. The Pearson correlation coefficient was used to find the correlation between acoustic parameters and EGG parameters in two groups(ordinary college students group and classical singing students group). Results : The results of the study were as follows : First, there was no correlation between Jitter and EGG Jitter in ordinary college students group, but there was strong correlation between Jitter and EGG Jitter in classical singing students group. Second, there was no correlation between Shimmer and EGG Shimmer in ordinary college students group, but there was strong correlation between Shimmer and EGG Shimmer in classical singing students group. Third, there was no correlation between Harmonic to Noise Ratio(HNR) and EGG HNR in ordinary college students group, but there was strong correlation between HNR and EGG HNR in classical singing students group. Finally, there was no correlation between Normalized Noise Energy(NNE) and EGG NNE in two groups.

  • PDF

Infrasound Wave Propagation Characteristics in Korea (국내 인프라사운드 전파특성 연구)

  • 제일영
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.63-69
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) cooperating with Southern Methodist University(SMU) has been operating seismo-acoustic array in Chul-Won area to discriminate man-made explosions from natural earthquakes since at the end of July 1999. In order to characterize propagation parameters of detected seismo-acoustic signal and to associate these signals as a blast event accompanying seismic and acoustic signals simultaneously it is necessary to understand infrasound wave propagation in the atmosphere. Two comparable Effective Sound Velocity Structures(ESVS) in atmosphere were constructed by using empirical model (MSISE90 and HWM93) and by aerological observation data of Korea Meteorological Administration (KMA) at O-San area. Infrasound propagation path computed by empirical model resulted in rare arival of refracted waves on ground less than 200km from source region. On the other hand Propagation paths by KMA more realistic data had various arrivals at near source region and well agreement with analyzed seismo-acoustic signals from Chul-Won data. And infrasound propagation in specific direction was very influenced by horizontal wind component in that direction. Linear travel time curve drawn up by 9 days data of the KMA in autumn season showed 335.6m/s apparent sound velocity in near source region. The propagation characteristics will be used to associate seismo-acoustic signals and to calculate propagation parameters of infrasound wave front.

  • PDF

Absorption Characteristics of Micro-perforated Panel Absorber According to High Incident Pressure Magnitude and Variation of Geometric Parameters (높은 입사 음압 및 설계 인자의 변화에 따른 미세 천공판 흡음 기구의 흡음 특성)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1059-1066
    • /
    • 2011
  • The micro-perforated panel absorber(MPPA) is one of promising noise control elements because of its applicability to extreme environments where general porous materials cannot be used. Since the MPPA is inherently non-porous sound absorber, it can be a good candidate of acoustic protection system of a space launcher. The overall sound pressure level inside payload fairings of commercial launch vehicles is so high(around 140 dB OASPL) that the conventional linear impedance model cannot be directly applied to the design of the acoustic protection systems. In this paper an acoustic impedance models of a micro-perforated panel absorber at high sound pressure environment were reviewed and the use of the impedance on the practical design of MPPAs was addressed. The variation of absorption characteristics of MPPA was discussed according to the design parameters, e.g., perforation ratio, the minute hole diameter, the thickness of MPP and the incident sound pressure level.

An Acoustic and Aerodynamic Study of Consonants in Cheju

  • Cho, Tae-Hong;Jun, Sun-Ah;Ladefoged, Peter
    • Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.109-141
    • /
    • 2000
  • Acoustic and aerodynamic characteristics of Cheju consonants were examined with the focus on the well-known three-way distinction among stops (i.e., lenis, fortis, aspirated) and the two-way distinction between sand s*. Acoustic parameters examined for the stops included VOT, relative stop burst energy, Fo at the vowel onset, H1-H2, and H1-F2 at the vowel onset. For the fricatives s and s*, acoustic parameters were fricative duration, Fo, centroid of the fricative noise, RMS energy of the frication, H1-H2 and Hl-F2 at the onset of the following vowel. In investigating aerodynamics, intraoral pressure and oral flow were included for the bilabial stops. Results indicate that, although Cheju and Korean are not mutually intelligible, acoustic and aerodynamic properties of Cheju consonants are very similar in every respect to those of the standard Korean. Among other findings there are three crucial points worth recapitulating. First, stops are systematically differentiated by the voice quality of the following vowel. Second, stops are also differentiated by aerodynamic mechanisms. The aspirated and fortis stops are similar in supralaryngeal articulation, but employ a different relation between intraoral pressure and flow. Finally, our study suggests that the fricative s is better categorized as 'lenis' than as 'aspirated' in terms of its phonetic realization.

  • PDF

Analysis of Acoustic Emission Signals from Fluid Leakage (유체 누출에서의 음향방출 신호분석)

  • 김용민;윤용구;김호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.413-421
    • /
    • 1990
  • Acoustic emission signals due to leak from circular holes of 0.4, 1, 2 and 4mm diameter and rectangular slits of different geometry having the same cross section as 4mm diameter hole was studied both analytically and experimentally. Acoustic emission signals from a wide-band type transducer were transformed to digital signals through a digital oscilloscope, and $V_{rms}$ and frequency spectrum were obtained by processing digital signals. Relationships between acoustic parameters and fluid mechanical parameters were derived analytically. A quadrapole aerodynamic model was applied in the analysis of leak from the circular holes and $V_{rms}$ was found to be proportional to the root square of leak rate through the circular hole. A modified model based on dipole source mechanism and laminar equivalent diameter was applied in the analysis of leak signals from the rectangular slits. In the case of constant pressure, $V_{rms}$ increased as the laminar equivalent diameter of slit decreased. In the case of constant laminar equivalent diameter, however the result was similar to that for leak from the circular hole. The frequency spectra of leak signals shows the same frequency characteristics irrespective of the pressure difference.rence.