• Title/Summary/Keyword: Acoustic Oscillation

Search Result 114, Processing Time 0.02 seconds

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator (공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서)

  • Kim, Kee-Yun;Kim, Sang-Gyu;Hong, Yunseog;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.9
    • /
    • pp.813-821
    • /
    • 2013
  • In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

MR Technology to 4T

  • Vaughan, Thomas
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.103-105
    • /
    • 2003
  • After fifteen years of development, Magnetic Resonance (MR) technology for human imaging and spectroscopy is reaching a refined state with FDA approved 3T clinical products from Siemens, GE, and Philips. Broker has cleared CE approval with a 4T system. Varian supports a 4T system platform as well. Shielded magnets are standard at 3T from GE, Oxford, Magnex, and IGC. A shielded 4T whole body magnet is available from Oxford. Stronger switched gradients and dynamic shim coils, desired at any field, areespecially useful at higher static magnetic fields B0. In addition to the higher currents required for higher resolution slice or volume selection afforded by higher SNR, whole body gradient coils will be driven at increasing slew rates to meet the needs of new cardiac applications and other requirements. For example 3T and 4T systems are now being equipped with 2kV, 500A gradient coils and amplifiers capable of generating 4G/cm in 200msec, over a 67+/-cm bore diameter. High field EPI applications require oscillation rates at 1 kHz and higher. To achieve a benchmark 0.2 ppm shim over a 30cm sphere in a high field magnet, at least four stages of shimming need to be considered. 1) A good high field magnet will be built to a homogeneity spec. falling in the range of 100 to 150 ppm over this 30cm spherical "sweet spot" 2) Most modern high field magnets will also have superconducting shim coils capable of finding 1.5 ppm by their adjustment during system installation. 3) Passive ferro-magnetic shimming combined with 4) active, high order room temperature shim coils (as many as five orders are now being recommended) will accomplish 0.2 ppm over the 30cm sphere, and 0.1 ppm over a human brain in even the highest field magnets for human studies. Safety concerns for strong, fast gradients at any B0 field include acoustic noise and peripheral nerve stimulation. One or more of the mechanical decoupling methods may lead to quieter gradients. Patient positioning relative to asymmetric or short gradient coils may limit peripheral nerve stimulation at higher slew rates. Gradient designs combining a short coil for local speed and strength with a longer coil for coverage are being developed for 3T systems. Local gradients give another approach to maximizing performance over a limited region while keeping within the physiologically imposed dB0/dt performance limits.

  • PDF

A Comparison of Acoustic Parameters between Vocal Fold Bowing and Vocal Fold Polyp (궁형성대와 성대폴립 간의 음성 비교)

  • Kang, Young-Ae;Yoon, Yeo-Hoon;Yoon, Kyu-Chul;Seong, Cheol-Jae
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2011
  • Background and Objectives : Vocal fold bowing is an organic voice disorder that is associated with an abnormal structure of the vocal folds whereas vocal fold polyp is a functional voice disorder caused by an abnormal use of the vocal folds. Both types of vocal folds share a common property in that they make one's voice breathy or strained. The purpose of this study is to compare voice from two types of vocal folds and to offer information of clinical importance. Materials and Method: Vocal fold bowing and vocal fold polyp groups consisted of 7 male subjects, respectively. All subjects recorded /a/ in the state of measuring MPT (maximum phonation time), repeating 3 times, by a voice recorder (48 kHz sampling rate; 24 bit quantization). They answered the questions of K-VHI. Time domain parameters (such as perturbation parameters including HNR, Jitter, etc.) were calculated for the whole duration of /a/ and those of the frequency domain were measured in initial 40 ms and stable 40 ms of /a/, respectively. Mann-Whitney V-test was used for the time domain parameters and K-VHI survey, and Wilcoxon signed rank test was applied to the frequency domain parameters (H1, H2, H1-H2). Results: For K-VHI survey and the time domain analysis, there was no significant difference between bowing and polyp group. For frequency domain analysis, H1 and H2 showed a significantly different result between two groups. Vocal fold bowing group has longer duration and lower intensity than that of vocal fold polyp group in the 'aspirated interval', which could be observable prior to ordinary vowel oscillation. Conclusion: Both groups seem to show breathy voice. This could be referred on the basis of the value of H1-H2. The K-VHI survey says that subjects with vocal fold bowing feel more uncomfortable than subjects with vocal fold polyp.

  • PDF