• Title/Summary/Keyword: Acoustic Chamber

Search Result 253, Processing Time 0.027 seconds

Real Time 1/3 Octave Band Control System for High Intensity Acoustic Chamber (음향 챔버 내부의 1/3 옥타브 스펙트럼 실시간 제어 시스템)

  • Kim, Young-Key;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.881-885
    • /
    • 2002
  • This paper presents the performance and the algorithm of a 1/3-octave band spectrum control system. The system is developed to provide various spectrums in a high intensity acoustic chamber. The required spectrum, which usually comes from launch vehicle company, starts from 25Hz band and ends 10kHz band. Automatic spectrum control system is preferred since the system requires short settling time to guarantee the safety of test objects and to reduce the amount of operating gas. The developed system adapted a PCI data-acquisition/signal-generation board installed in a personal computer to implement whole control logic. The control software used three cascade digital Butterworth filters using software. The filers are designed following ANSI S1.11 standard to implement 1/3 octave band filter bank. The graphical user interface of the system guides the user to follow standard operation procedure. The averaged control spectrum showed less than 0.05 dB in every running 1/3-octave band.

  • PDF

An Acoustic Analysis of Mufflers with a Concentric Extended Pipe (동심 연장관형 소음기의 음향해석)

  • Lee, Jun-Shin;Lee, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.108-114
    • /
    • 1995
  • Cylindrical chamber mufflers with an extended inlet or outlet are extensively used in many application fields to reduce the propagated noise in ducts. The basic attenuation effectivencess in the low frequency region can be explained by the reactive wave action inside the expansion chamber associated with the geometric configurations of the inlet and outlet locations, and the area expansion of the jacket. In this study, an acoustic analysis is carried out for a concentric extended pipe inserted into a simple expansion chamber. An algebraic equation is derived by using the eigenfuction expansion and orthogonality principle in which the acoustic pressures and particle velocities defined on each subdivided surface are expressed by the separable coordinates. By using the proposed analytical method, transmission losses are predicted for several configurations of the concentric extended systems and they agree very well with experimental results.

  • PDF

Vibration Isolation System of a Large Reverberation Chamber (대형 잔향실의 방진 설계 및 검증)

  • 김영기;김홍배;이동우;우성현;문상무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1026-1031
    • /
    • 2003
  • A vibration isolation system fur a large reverberation chamber (1,228㎥, 1,000ton) has been installed. The reverberation chamber generates loud noise and induces high level of vibration to perform spacecraft acoustic environmental tests. The isolation system prevents vibration transfer from the chamber to enclosure buildings. This paper describes logical design process and commissioning experiments of the system. Design criteria have been induced from rigid body model of the chamber. Finite element model has been employed to select the characteristics of rubber pads. A total of 21 rubber pads have been installed between the chamber and supporting pedestals. A sand bag of 800kg was dropped on the chamber floor to measure the natural frequency of the isolation system. Absolute transmissibility has been measured while generating 145㏈ in the chamber. The natural frequency of the chamber is 10.5㎐, which is 80% of estimated value. Overall transmissibility at working frequency range (25㎐-10,000㎐) is less than -6㏈.

  • PDF

Prediction of the Transmission Loss of Rectangular Lined Plenum Chamber by the Rayleigh-Ritz Method (Rayleigh-Ritz 방법에 의한 흡음재가 부착된 직방형 소음기의 전달 손실 예측)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.869-872
    • /
    • 2005
  • The purpose of this study is on the prediction of the acoustic performance of the lined rectangular plenum chamber which can be used in the HVAC systems. The lined plenum chamber is modeled as a piston driven rectangular tube without mean flow and the acoustic pressure in the lined chamber is obtained by superposing the three dimensional pressure due to each of uniformly and harmonically fluctuating pistons. The arbitrary locations of inlet/outlet ports as well as the acoustic higher order modes generated at the area discontinuities of the port chamber interfaces are taken into consideration. The four-pole parameters can be derived by imposing the proper boundary conditions on each inlet and outlet ports. The lining material on the internal wall is assumed to be a bulk-reacting model. A single weak variation statement which satisfies the fluctuating rigid piston condition and the pressure and displacement continuity condition at the interface between the lining material and the airway was developed. The set of cosine functions were used as the admissible function when applying the Rayleigh-Ritz method. Computed results are compared with those predicted by using the locally-reacting lining material and experimental results, respectively. There are a good agreement shown between the results by the Rayleigh-Ritz method and the experiment results. The derived transfer matrices can be easily combined with other four-pole parameters of different types of mufflers for the calculation of the whole system performance.

  • PDF

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용 효과)

  • Sohn, Chae-Hoon;Seol, Woo-Seok;Lee, Soo-Yong;Kim, Young-Mog;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.79-87
    • /
    • 2003
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with/without these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the peculiar stability characteristics depending on the operating condition and it is found to have small dynamic stability margin. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect.

Experimental study of combustion stability assesment of injector (액체로켓엔진 안정성 예측을 위한 시험적 기법 연구)

  • Lee, Kwang-Jin;Seo, Seong-Hyeon;Moon, Il-Yoon;Han, Yeoung-Min;Seol, Woo-Seok;Lee, Soo-Yong
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.145-152
    • /
    • 2003
  • The objective of the present study is to develop methodology for the assesment of combustion stability of liquid rocket injectors. To simulate actual combustion occurring inside of a thrust chamber, a full-scale injector has been employed in the study, which burns gaseous oxygen and mixture of methane and propane. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Single & multi split triplet injectors have been used with an open-end cylindrical combustion chamber. The characteristics revealed by excited dynamic pressures in gaseous combustion show degrees of relative acoustic damping depending on operating conditions. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

Combustion stability assessment of muti-injector using simulant propellant in LRE (모의 추진제를 이용한 액체로켓엔진용 다중 분사기의 연소안정성 평가 방법)

  • Seo Seonghyeon;Song Joo-Young;Seol Woo-Seok;Lee Kwang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.229-234
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for double swirl coaxial injectors to identify their combustion stability characteristics. Gaseous oxygen and mixture of methane and propane have been used as simulant propellants. Two model chambers tuned to the If acoustic resonance mode of a full-scale thrust chamber were manufactured to be used as a combustion cylinder. The main idea of the experiment is that the mixing mechanism is considered as a dominant factor significantly affecting combustion instability in a full-scale thrust chamber. Self-excited dynamic pressure values in a model chamber show different combustion stability zones with respect to a recess number. Upon test results, couplings between combustion conditions and the IT acoustic resonance mode become strengthened with the increase of a recess length.

  • PDF

The omni-directional sound source analysis for evaluating the vehicle sound insulation performance

  • Takashima, Kazuhiro;Nakagawa, Hiroshi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.484-488
    • /
    • 2007
  • In this paper, the measurement system using the microphone array developed for analyzing cabin noise of the vehicle and its applications are discussed. The sensor is a three dimensional microphone array, the microphones and cameras are equipped on the rigid sphere. The cameras are used for acoustic visualization. As applications, the experiments in both reverberation chamber and anechoic chamber are discussed. These results show that this system is very useful to evaluate or improve the vehicle sound insulation performance.

  • PDF

Prediction of Transmission Loss of Elliptic Expansion Chamber with Mean Flow by 3-Dimensional Finite Element Method (3차원 유한요소법을 이용한 타원 단면 소음기의 투과 손실 계산)

  • 윤성기;이응식
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.271-278
    • /
    • 1993
  • Acoustic characteristics of silencer system are affected by various geometric parameters such as cross sectional geometry, size of chamber, and location of inlet-outlet port. It is impossible to obtain exact solutions of the equations of acoustic wave propagation except few simple cases. So, we resort to numerical techniques to analyze performance of acoustic system. In this work, finite element formulation has been obtained to predict transmission loss of an arbitrary 3-dimensional muffler in the presence of mean flow of low mach number. The effect of the degree of the ellipticity of expansion chambers on the transmission loss has been studied using the resulting finite element equation.

  • PDF

A Study on Quantification of Acoustic Amplification Using Dynamic Mode Decomposition Method (Dynamic Mode Decomposition 방법을 이용한 음향 증폭/감쇠 정량화에 관한 연구)

  • Jourdain, Guillaume;Eriksson, Lars-Erik;Kim, Su-Ho;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.364-366
    • /
    • 2012
  • Quantification of acoustic amplification in a model chamber has been studied for combustion stabilization induced by passive control devices. DMD(Dynamic mode Decomposition) method is adopted and the results from method are compared with those from damping factor approach. The model chamber has a faceplate with baffled injectors, where damping factor has its maximum at a specific baffle gap. They show a good agreement with the results from the previous method.

  • PDF