• Title/Summary/Keyword: Acoustic Chamber

Search Result 253, Processing Time 0.029 seconds

SAW Sensor Network Design and Reflected Waves Removal for Temperature Measurement (온도 센싱을 위한 SAW 센서 네트워크 설계 및 다중경로 반사파 제거)

  • Kyung-Soon Lee;Kyung Heon Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.469-472
    • /
    • 2023
  • If temperature management is required in factory or environmental monitoring, temperature can be measured by connecting various sensors wired or wirelessly. Surface acoustic wave sensors measure temperature using changes in acoustic waves on the sensor surface according to temperature, and are useful for wireless networks. In this paper, in order to build a wireless temperature measurement system in the 900 MHz frequency band, the temperature characteristics of the passive SAW sensor were measured, and the analysis and removal of multipath reflection wave effect inside the high temperature chamber were conducted. The resonant frequency of the SAW sensor was measured, and radio transmission/reception and multipath reflected wave removal techniques were proposed in the shielded chamber.

Acoustical Performance Analysis of the Simple Expansion Chamber by using CFD (CFD를 이용한 단순확장관의 음향특성 해석)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung;Jeong, Weui-Bong;Kim, Hyung-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1354-1359
    • /
    • 2007
  • This paper discusses the acoustic performance of simple expansion chamber using computational fluid dynamics(CFD). The CFD model consists of an axisymmetric grid with a single period sinusoid of acceptable amplitude and duration imposed at the inlet boundary condition. The time history of the static pressure is recorded at two points, one in the inlet pipe and one point in outlet pipe. The time history of the static pressure is converted to the frequency domain using Fourier Transform and the transmission loss (TL) of the muffler is obtained from the ratio of the static pressure at the inlet and outlet pipe. The transmission loss of CFD result is compared with that of the computational acoustic analysis using the boundary element method (BEM). There are some differences in two results due to the pressure drop according to the inlet and outlet pipe length. Therefore, the effects of the pressure drop to the transmission loss have to be considered.

  • PDF

Development of a Formula for Acoustic Transmission Loss According to Partition Positions in a Simple Expansion Chamber (단순확장관 내부 파티션 위치에 따른 음향투과손실 계산식의 개발)

  • Park, Jeong-Pil;Bae, Kyeong-Won;Jeong, Weui-Bong;Ahn, Se-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.116-123
    • /
    • 2015
  • This paper proposed a new formula for predicting acoustic power transmission loss of simple expansion chamber with two internal partitions. Seventeen cases of computational results were performed and the database was constructed for the TL according to the various positions of internal partitions. Using this database, firstly, the formula for the peak values of TL at certain frequencies was developed using the least square estimation. Secondly, the formula for the TL curve could be obtained automatically with the input data of the positions of two internal partitions. The formula of TL developed in this paper showed good agreement with computational results. This formula will be helpful for the positioning of internal partitions to improve TL at target frequencies.

The measurement and analysis of Regenerative Pump Noise (재생펌프 소음특성의 측정 및 해석에 관한 연구)

  • Kim, Tae-Hoon;Seo, Young-Soo;Jeong, Weui-Bong;Jeong, Ho-Kyeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1067-1071
    • /
    • 2004
  • In this paper, the characteristic of the regenerative pump is reviewed by the measurement and the analysis. The dominant noise sources are harmonic components of the rotating impeller frequency. The acoustic characteristics and the noise source position at the dump are identified. In order to reduce the high-level peak noise, the interior flow of the pump chamber is analyzed by CFD (Computational Fluid Dynamics). Acoustic pressure is calculated with Ffowscs Williams and Hawkings equation. As the result of the analysis new design of the pump chamber is recommended. The recommended pump is compared with original pump by evaluating the RMS value of a interior static pressure and the sound pressure level. The new pump chamber recommended by analysis results is proved by a process of the measurement. The overall SPL of a recommended pump is reduced about 3 dBA.

  • PDF

Calculation and Uncertainty Estimation of the Volume of Reverberation Chamber with Indeterminate Form (부정형 잔향실의 체적 산출과 체적 불착도 평가)

  • Suh, Jae-Gap;Suh, Sang-Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.375-380
    • /
    • 2007
  • A reverberation chamber should be designed and constructed so as to satisfy its purposes and available space. However, it is somewhat difficult to meet the intended design requirements due to various errors from construction process. So, the post-construction measurement of its volume and surface areas is very essential to check the actual volume and volume uncertainty of a reverberation chamber These values should be carefully calculated and accurately estimated since they are used not only to evaluate the acoustic characteristics of building materials but also to calculate uncertainties for other acoustic characteristics. In this work, the method for the calculation and uncertainty estimation of the volume of a reverberation chamber is presented. To this end, the coordinates of all corners was measured with Total Station after construction. The results showed that the calculated volume of the measured reverberation chamber differs by 5 % from the design specification. The expanded volume uncertainty was also estimated to be about 2 % of the total calculated volume.

Acoustic Loads Test of the Upper Stage of KSLV-I (소형위성발사체 상단부의 음향하중시험)

  • Chun, Young-Doo;Park, Jong-Chan;Chung, Eui-Seung;Park, Jung-Joo;Cho, Kwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.224-227
    • /
    • 2007
  • This paper introduces the results of acoustic loads test conducted on the upper stage assembly of KSLV-I, which is the first Korea space launch vehicle. A launch vehicle and its payloads are subjected to severe acoustic pressure loading when they lift off and ascent during the transonic periods. Acoustic loadings are spreaded out broad frequncy-spectrum up to 10,000Hz. Acoustic loads are a primary source of structural random vibration of the upper stage and payloads. Therefore, in order to verify the structural integrity of the upper stage assembly of KSLV-I and the survivability of its components under severe random vibration environment, acoustic loads test is conducted in the high intensity acoustic chamber with 142dB (overall SPL). The results show the structural design and component random vibration specifications well meet with the environmental requirements.

  • PDF

On Design of Half-Wave Resonators for Acoustic Damping in a Model Combustion Chamber (모형 연소실내 음향 감쇠를 위한 반파장 공명기의 설계에 관한 연구)

  • Park, Ju-Hyun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.18-21
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model combustor. According to standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic damping capacity of the resonator is characterized. The diameter and the number of a half-wave resonator, its distribution are selected as design parameters for optimal tuning of the resonator. Acoustic damping capacity increases as the resonators with diameter increases. The optimum number of resonators or the optimum open-area ratio decreases as boundary absorption decreases.

  • PDF

Combustion Instability of Gas Turbine with Segmented Dynamic Thermo-Acoustic Model under Load Follow-Up (이산형 열-음향 모델을 이용한 부하 변동시 가스터빈 연소 불안정 특성)

  • JEONG, JIWOONG;HAN, JAEYOUNG;JEONG, JINHEE;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.538-548
    • /
    • 2018
  • The thermo-acoustic instability in the combustion process of a gas turbine is caused by the interaction of the heat release mechanism and the pressure perturbation. These acoustic vibrations cause fatigue failure of the combustor and decrease the combustion efficiency. This study is to develop a segmented dynamic thermo-acoustic model to understand combustion instability of gas turbine. Therefore, this study required a dynamic analysis rather than static analysis, and developed a segmented model that can analyze the performance of the system over time using the Matlab/Simulink. The developed model can confirm the thermo-acoustic combustion instability and exhaust gas concentration in the combustion chamber according to the equivalent ratio change, and confirm the thermo-acoustic combustion instability for the inlet temperature and the load changes. As a result, segmented dynamic thermo-acoustic model has been developed to analyze combustion instability under the operating condition.

A Study on the Pressure Resonance with Combustion Chamber Geometry for a Spark Ignition Engine (스파크 점화기관의 연소실 형상에 따른 공진현상 해석에 관한 연구)

  • Park, Gyeong-Seok;Jang, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1905-1910
    • /
    • 2001
  • Pressure resonance frequency that is caused in the combustion chamber can be interpreted by acoustic analysis. Until now the pressure resonance has been assumed and calculated to a disc type combustion chamber that neglected the combustion chamber height because the knock occurs near the TDC(top dead center). In this research FEM(finite element method) has been used to calculate the pressure resonance frequency inside the experimental engine combustion. The error of the resonance frequency obtained by FEM has decreased about 50% compared to the calculation of Draper's equation. Due to the asymmetry in the shape of the combustion chamber that was neglected in Draper's equation we could find out that a new resonance frequency could be generated. To match the experimental results, the speed of sound that satisfies Draper's equation is selected 13% higher than the value for pent-roof type combustion chamber.

Acoustic Performance of a Scaled Reverberation Chamber (간이 잔향실의 음향성능)

  • Kang, Hyun-Ju;Kim, Bong-Kee;Kim, Jae Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.101-104
    • /
    • 2005
  • This study presents experimental results from the performance test of a scaled reverberation chamber for measurement of sound insulation of panels. Experimental investigations were conducted in various parameters such as tunneling effect source locations, and maximum sound transmission loss. It is evident that the tunneling effect which means the variation with specimen location on the test frame gives rise to more than 3 dB deviation. One of the objective of this study that compares measured results between a real reverberation chamber and a simplified test apparatus, by using a specimen of a sandwich panel. It shows qualitatively resonable agreement from which one can find a potential to provide a design tool.

  • PDF