• Title/Summary/Keyword: Acoustic Cavity

Search Result 238, Processing Time 0.036 seconds

Evaluation of Design Variables to Improve Sound Radiation and Transmission Loss Performances of a Dash Panel Component of an Automotive Vehicle (방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자 별 영향도 분석)

  • Yoo, Ji-Woo;Chae, Ki-Sang;Park, Chul-Min;Suh, Jin-Kwan;Lee, Ki-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • While a dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it is important to provide optimal design schemes incorporating sound packages such as a dash isolation pad and a floor carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. A novel FE-SEA hybrid simulation model is used for this study. The system taken into account is a dash panel component of a sedan vehicle, which includes front pillars, front side members, a dash panel and corresponding sound packages. Design variables such as panel thicknesses and sound packages are investigated how they are related to two main NVH indexes, sound radiation power(i.e. structure-borne) and sound transmission loss(i.e. air borne). In the viewpoint of obtaining better NVH performance, it is shown that these two indexes do not always result in same tendencies of improvement, which suggests that they should be dealt with independently and are also dependent on frequency regions.

Ultrasonographic Diagnosis of Subcutaneous Wooden Foreign Body (피하 조직에 발생한 나무 이물의 초음파 진단)

  • Choi, Ji-Hye;Keh, Seo-Yeon;Kim, Sung-Soo;Kim, Hye-Jin;Jang, Jae-Young;Choi, Hee-Yeon;Yoon, Jung-Hee
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.163-172
    • /
    • 2011
  • Subcutaneous foreign body causes recurrent problems such as chronic soft tissue swelling and discharge. Wooden foreign body is one of the most common foreign bodies found in subcutaneous region including face, interdigit, and thoracic or abdominal area. This report demonstrated three dogs with wooden foreign body located in subcutaneous region of thoracic wall, abdominal wall and upper eyelid, respectively. Three dogs showed prominent soft tissue swelling adjacent the foreign body. A sinus or drainage tract was developed in two of these dogs. Ultrasonography revealed that hyperechoic linear structure accompanied acoustic shadow in all dogs, and which was diagnosed as a subcutaneous foreign body. Anechoic or hyperechoic fluid and hypoechoic tissue circumscribed the foreign body. A subcutaneous foreign body in case 3 was removed by clamp under ultrasound-guide with sedation. Sinography was performed in case 1 and clarified that the wooden foreign body did not perforate the thoracic wall and there was no direct communication into thoracic cavity. Ultrasonography and sinography can be used to identify the subcutaneous foreign body and evaluate the inflammatory reaction and relationship between foreign body and adjacent structures.

Relationship between roar sound characteristics and body size of Steller sea lion

  • Park, Tae-Geon;Iida, Kohji;Mukai, Tohru
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.458-465
    • /
    • 2010
  • Hundreds of Steller sea lions, Eumetopias jubatus, migrate from Sakhalin and the northern Kuril Islands to Hokkaido every winter. During this migration, they may use their roaring sounds to navigate and to maintain their groups. We recorded the roars of wild Steller sea lions that had landed on reefs on the west coast of Hokkaido, and those of captive sea lions, while making video recordings. A total of 300 roars of wild sea lions and 870 roars of captive sea lions were sampled. The fundamental frequency ($F_0$), formant frequency ($F_1$), pulse repetition rate (PRR), and duration of syllables (T) were analyzed using a sonagraph. $F_0$, $F_1$, and PRR of the roars emitted by captive sea lions increased in the order male, female, and juvenile. By contrast, the $F_1$ of wild males was lower than that of females, while the $F_0$ and PRR of wild males and females did not differ statistically. Moreover, the $F_0$ and $F_1$ frequencies for captive sea lions were higher than those of wild sea lions, while PRR in captive sea lions was lower than in wild sea lions. Since there was a linear relationship between body length and the $F_0$ and $F_1$ frequencies in captive sea lions, the body length distribution of wild sea lions could be estimated from the $F_0$ and $F_1$ frequency distribution using a regression equation. These results roughly agree with the body length distribution derived from photographic geometry. As the volume of the oral cavity and the length of the vocal cords are generally proportional to body length, sampled roars can provide useful information about a population, such as the body length distribution and sex ratio.

A Study on the Absorption Performance of a Perforated Panel type of Resonator (다공패널형 공명기의 흡음성능에 관한 연구)

  • Song, Hwayoung;Yang, Yoonsang;Lee, Donghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.224-231
    • /
    • 2016
  • When aiming to reduce the low frequency noise of a subway guest room through sound absorbing treatment methods inside the wall of a tunnel the resonator is often more effective than a porous sound absorbing material. Therefore, the perforated panel type resonator embedded with a perforated panel is proposed. The perforated panel is installed in the neck, which is then extended into the resonator cavity so that it can ensure useful volume. The absorption performance of the perforated panel type of resonator is obtained by acoustic analysis and experiment. The analytical results are in good agreement with the experimental results. In the case of multiple perforated panel type resonators, as the number of perforated panels increase, the 1st resonance frequency is moved to a low frequency band and sound absorption bandwidth is extended on the whole. In order to obtain excellent absorption performance, the impedance matching between multi-panels should be considered. When the perforated panel in the resonator is combined with a porous material, the absorption performance is highly enhanced in the anti-resonance and high frequency range. In case of the resonator inserted with perforated panels of 2, the 2nd resonance frequency is shifted to a low frequency band in proportion to the distance between perforated panels.

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.

Voice onset time in children with bilateral cochlear implants (양측 인공와우이식 아동의 성대진동시작시간 특성)

  • Jeon, Yesol;Lee, Youngmee
    • Phonetics and Speech Sciences
    • /
    • v.14 no.2
    • /
    • pp.77-86
    • /
    • 2022
  • This study aimed to investigate the voice onset time (VOT) of plosives in the VCV syllables by the place of articulation and phonation type spoken by children with bilateral cochlear implants (CIs) in comparison with children with typical hearing (TH). In all, 15 children with bilateral CIs and 15 children with TH participated in this study, aged between 5 to 10 years. All children produced 9 VCV syllables and their VOT were analyzed by the Praat software. There was no significant difference in mean VOT between children with bilateral CIs and children with TH. However, there was a significant difference in mean VOT by the place of articulation, such that the VOT for velars were longer than those for bilabials and alveolars. Additionally, there was a significant difference in mean VOT by the phonation type, such that the VOT of aspirated consonants were longer than those of lenis and fortis consonants. The results of this study suggest that children with bilateral CIs can distinguish the acoustic properties of plosive consonants and control the speech timing between the structures of the larynx and the oral cavity at a similar level as children with TH.

Selection of Scale Model Materials for Acoustical Evaluation of 1:50 Multipurpose Halls (1:50 다목적홀의 음향평가를 위한 축소모형재료의 선정)

  • Jeon, Jin-Yong;Kim, Jeong-Jun;Kim, Yong-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.781-789
    • /
    • 2009
  • The absorption coefficients of the materials used in a 1:50 scale model multipurpose hall were measured based on ISO 354 and related laws. The shape and materials for the scale model were evaluated based on reflective surfaces, variable acoustic elements and sound-absorbing quality (125Hz-1kHz average) of seats. The measured average absorption coefficients of audience seats, audience and orchestra were 0.64, 0.74 and 0,45, respectively, which were simulated with the combination of wood, absorption materials and foam board. Various mounting methods for absorption curtain and banner were considered according to the installation methods. The average absorption coefficient was measured as 0.42, 0.47 and 0.45 in the conditions of Type A mounting, E mounting with 0.9 m backing air cavity, and Type G mounting which is suspended at the ceiling, respectively. It was confirmed that the absorption coefficient was increased at low frequency by backing air gap. The finishing material of stage house was an absorption material covered with thin fabric, which aimed average absorption coefficient of 0.68 by using fiber glass board. Each part of the real materials was compared with those of 1:50 scale model and it was found that the absorption characteristics of both cases were similar.