• Title/Summary/Keyword: Acoustic Beamforming

Search Result 74, Processing Time 0.025 seconds

A Feedback and Noise Cancellation Algorithm of Hearing Aids Using Adaptive Beamforming Method (적응 빔형성기법을 이용한 보청기의 궤환 및 잡음제거 알고리즘)

  • Lee, Haeng-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.96-102
    • /
    • 2010
  • This paper proposes a new adaptive algorithm to cancel the acoustic feedback and noise signals in the digital hearing aids. The proposed algorithm improves its convergence performances by canceling the speech signal from the residual signal using two microphones. The feedback canceller firstly cancels the feedback signal among the mic signal, and then it is reduced the noise using the beamforming method. To verify the performances of the proposed algorithm, the simulations were carried out for some cases. As the results of simulations, it was proved that the feedback canceller and the noise canceller advance about 14.43 dB for SFR, 10.19 dB for SNR respectively during speech, in the case of using the new algorithm.

Error Analysis of the Passive Localization Using Near-field Effect in the Sea (해양에서 근거리효과를 이용한 수동 위치추정 오차분석)

  • 박정수;최진혁
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.75-81
    • /
    • 2001
  • In this paper we analyzed the localization error of near-field detection algorithm in the sea. The near-field detection algorithms using triangulation and wavefront curvature basically assume a signal in two dimension of bearing and range. But the assumption causes localization error because there is three dimension of bearing, range, and depth in the sea. Even through three dimensional effect is considered, the localization error is occurred if multipath propagation in the sea is ignored. To analyze the localization error in the sea, we simulate the near-field localization using acoustic propagation model and focused beamforming considering wavefront curvature. The simulation results indicate that localization error always occurs in the sea and the error varied with sound velocity profile, water depth, bottom slope, source range, etc.

  • PDF

Directivity Characteristics of Non-Linear Array for Wide-Band One-Shot Beamforming (광대역 단일빔형성을 위한 비선형배열의 지향 특성)

  • 도경철;손경식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.27-34
    • /
    • 1999
  • This paper proposes an algorithm to design the non-linear array so as to form efficiently the one-shot beam with relatively less sensors for acoustic measurement. In this algorithm, according to the spatial sampling theory the part for high frequency(HF) band has equispaced sensor array and the sensor distances below the HF band are decided as a function of number of HF sensors. As the results of the simulations, the mean and variances of directivity index(DI) of non-linear array which has less sensors are similar to those of linear array. and the DI variation for beam steering angle is very small. And the beam width at -2dB point is 6.8°. Thus it is confirmed that the design algorithm for non-linear array which is proposed to have less sensors can be efficiently used in acoustic measurement.

  • PDF

Measurement of Horizontal Coherence Using a Line Array In Shallow Water

  • Park, Joung-Soo;Kim, Seong-Gil;Na, Young-Nam;Kim, Young-Gyu;Oh, Teak-Hwan;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.78-86
    • /
    • 2003
  • We analyzed the measured acoustic field to explore the characteristics of a horizontal coherence in shallow water. Signal spatial coherence data were obtained in the continental shelf off the east coast of Korea using a horizontal line array. The array was deployed on the bottom of 130 m water depth and a sound source was towed at 26 m depth in the source-receiver ranges of 1-13 ㎞. The source transmitted 200 ㎐ pure tone. Topography and temperature profiles along the source track were measured to investigate the relationship between the horizontal coherence and environment variations. The beam bearing disturbance and array signal gain degradation is examined as parameters of horizontal coherence. The results show that the bearing disturbance is about ± 8° and seems to be affected by temporal variations of temperature caused by internal waves. The array signal gains show degradation more than 5㏈ by the temporal and spatial variations of temperature and by the down-sloped topography.

Development and It's Real-sea Test of an Underwater Acoustic Communication System (수중무선통신 시스템 개발 및 성능시험)

  • Lim, Yong-Kon;Park, Jong-Won;Kim, Seung-Geun;Choi, Young-Chol;Kim, Sea-Moon;Byun, Sung-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.89-90
    • /
    • 2008
  • We present an implementation and it's real-sea test of an underwater acoustic communication system, which allows the system to reduce complexity and increase robustness in time variant underwater environments. For easy adaptation to complicated and time-varying environments of the ocean, all-digital transmitter and receiver systems were implemented. For frame synchronization the CAZAC sequence was used, and QPSK modulation/demodulation method with carrier frequency of 25kHz and a bandwidth of 5kHz were applied to generate 10kbps transmission rate including overhead. To improve transmission quality, we used several techniques and algorithms such as adaptive beamforming, adaptive equalizer, and convolution coding/Viterbi decoding. For the verification of the system performance, measurement of BER has been done in a very shallow water with depth of 20m at JangMok, Geoje. During the experiment, image data were successfully transmitted up to about 9.6km.

  • PDF

Performance Enhancement of Underwater Acoustic Communication System Using Hydrophone Transmit Array (하이드로폰 송신 어레이를 이용한 수중 음향 통신 시스템의 성능 향상)

  • 이외형;손윤준;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.606-613
    • /
    • 2002
  • In this paper we applied a transmit beamforming technique to the underwater acoustic communication system for high rate data transmission. A prototype transmit system was designed and implemented with the general purpose DSP processor and multiple digital-to-analog converters. The performances of the implemented system were evaluated by the experiment in water tank. In order to simplify the procedure the channel coding and equalizer were omitted. And the simplest OOK (On-Off Keying) technique in digital communication methods was applied. The experimental result shows that the transmission data rate is higher about 3 times in the case of 5 hydrophone transmitting may than 1 hydrophone transmitter at bit error rate 10/sup -2/. We verified that the maximum data rate was 400 bps for speech signal transmission in water tank.

Sound Source Detection Technique Considering the Effects of Source Bandwidth and Measurement Noise Correlation (소음원 대역폭과 측정잡음의 상관관계를 고려한 소음원 탐지기법)

  • 윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2001
  • Various array processing techniques to identify the noise source position or bearing have been developed. Typical array processing techniques which are based on time delay between received signals at two sensors, are classified as conventional beamforming, correlation function and NAH (Near-Field Acoustic Holography) techniques which have their own characteristics with respect to application field and signal processing method. In this study, correlation function technique which could be applied for broadband noise source detection, is adopted and the effective detection technique is proposed considering the effects of source bandwidth and measurement noise correlation of noise sources. The validity of the Proposed technique is evaluated using the 3-dimensional nonlinear any which does not give 3-dimensional Position or bearing ambiguity

  • PDF

Position Estimation of Underwater Acoustic Source Using Pulsed CW Signal (Pulsed CW 신호를 사용하는 수중 음원의 위치 추정을 위한 시간지연차 추정법)

  • 최영근;손권;도경철;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.7
    • /
    • pp.514-520
    • /
    • 2004
  • There are many techniques for underwater source localization. These are the methods based on TDOA (Time Difference Of Arrival) estimation. beamforming techniques and high resolution techniques, etc. In this Paper we estimate the underwater source position using MCPSP (Modified Cross Power Spectrum Phase) function that is calculated on frequency domain using sensors of small number. However, the performances of the localizing method based on MCPSP function drops greatly in the case of CW (Continuous Wave) signal . In this Paper we proposed the TDOA estimation method for pulsed CW signal. In the Proposed method we composed of new segment including a edge of ping. This segment was computed by short-time energy detection. With theoretical representation the performances of the proposed method were analyzed under various environment.

The Implementation of a Real-time Underwater Acoustic Communication System at Shallow water (천해역에서의 실시간 수중 데이터 통신 시스템 구현)

  • Baek, Hyuk;Park, Jong-Won;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.754-757
    • /
    • 2007
  • In this paper, we present an implementation and it's real-sea test of an underwater acoustic data communication system, which allows the system to reduce complexity and increase robustness in time variant underwater environments. For easy adaptation to complicated and time-varying environments of the ocean, all-digital transmitter and receiver systems were implemented. For frame synchronization the CAZAC sequence was used, and QPSK modulation/ demodulation method with carrier frequency of 25kHz and a bandwidth of 5kHz were applied to generate 10kbps transmission rate including overhead. To improve transmission quality, we used several techniques and algorithms such as adaptive beamforming, adaptive equalizer, and convolution coding/Viterbi decoding. for the verification of the system performance, measurement of BER has been done in a very shallow water with depth of 8m at JangMok, Geoje. During the experiment, image data were successfully transmitted up to about 7.4km.

  • PDF

Indentification of Coherent/Incoherent Noise Sources Using A Microphone Line Array (독립, 비독립 음원이 동시에 존재할 경우 선형 마이크로폰 어레이를 이용한 소음원 탐지 방법)

  • 김시문;김양한
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.835-842
    • /
    • 1996
  • To identify the locations and strengths of acoustic sources, one may use a microphone line array. Apparent advantage of the source identification method utilizing a line array is that it requires less measurement points than intensity method and holography. This method is based on the information of magnitude and phase difference between pressure signals at each microphone. Since those differences are dependent on the source model, we have to assume them such as plane, monopole, etc. In this paper the conventional source identification methods such as beamforming method and MUSIC method are briefly reviewed by modeling a source as plane and spherical wave, then a modified method is introduced. This can be applied to sound field which may by either coherent or incoherent. Typical simulations and experiment are performed to confirm this identification method.

  • PDF