• Title/Summary/Keyword: Aclarubicin microfluidizer

Search Result 3, Processing Time 0.017 seconds

Preparation and Evaluation of Aclarubicin Liposome using Microfluidizer (마이크로플루다이저를 이용한 아클라루비신 리포좀의 제조 및 평가)

  • Park, Mork-Soon;Park, Jin-Kyu;Lee, Gye-Won;Baek, Myoung-Ki;Jee, Ung-Kil
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.265-274
    • /
    • 1998
  • In order to attain a sustained release at targeted organs in a prolonged time which can reduce the side effects and maximize the therapeutic effect, aclarubicin (ACL) was entrap ped into liposomes of different lipid compositions using Microfluidizer, and dry liposomes were prepared by lyophilization. The dry aclarubicin-entrapped liposomes were evaluated in terms of mean particle size and size distribution, entrapment efficiency and in vitro drug release profile. The Entrapment efficiency of liposome, when the concentration of aclarubicin and lipid were 0.5 to 1.0mg/ml and $200{\mu}mol$/ml, respectively, was over 80% using Microfluidizer, in contrast to 70% of entrapment efficiency using hand-shaking method. Mean particle size and size distribution of aclarubicin-entrapped liposomes of various lipid compositions did not change considerably by the freeze drying. The range of particle size was between 80 and 200nm. Among aclarubicin-entrapped liposomes, ACL-liposome of PC/DPPC/CH0L/TA displayed the most significant sustained release. The addition of DPPC appeared to be favorable for the control of release. In general, aclarubicin entrapped in liposomes was less stable than free aclarubicin either in pH 7.4 phosphate buffer or in human plasma. Formulation I($t_{1/2}$, 20.3 hr) devoid of lipid additive was the most unstable in the phosphate-buffer solution while formulation II($t_{1/2}$, 40.7 hr) with cardiolipin was the most stable. Half lives of aclarubicin-entrapped liposomes in human plasma were 43.2, 50.7, 35.9 and 35.3 hr for formulation I. II, III and IV, respectively, in contrast to 57.8 hr for free aclarubicin.

  • PDF

Pharmacokinetics, Cell Toxicity, Antitumor Activity and Spleen/Blood Cell Toxicity of Aclarubicin-entrapped Liposomes (리포좀에 봉입된 아클라루비신의 약물동태, 세포독성, 항암효과 및 비장/혈구 세포독성)

  • 박목순;박진규;이계원;명평근;석대은;황성주;지웅길
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.274-274
    • /
    • 1998
  • Aclarubicin(ACL)-entrapped freeze dried liposomes were prepared using Microfludizer to attain a sustained release at targeted organs in a prolonged time so that it can reduce th e side effect and maximize the therapeutic effect. The freeze-dried liposomes were evaluated for pharmacokinetics, antitumor activity against Sarcoma 180, cytotoxicity against L1210 and A549 tumor cells, spleen toxicity and myelosuppressive action. The AUC0->8hr values were 122+/-42, 382+/-140, 419+/-171, 835+/-206 and 443+/-309mcg min/ml for free ACL. ACL-liposome formulation I, II, III and IV, respectively. Cytotoidcity of ACL-entrapped liposomes against L1210 and A549 tumor cells was 2-4 times higher than that of free aclarubicin. ACL-liposome formulation I(PC/CHOL/TA) showed the most potent antitumor activity against Sarcoma 180 in mice. The loss of body weight was much smaller with ACL-entrapped liposomes than free ACL after I.p. injection at a dose of 2 mg/kg/day. Compared to free ACL, ACL-entrapped liposomes expressed a lower and delayed spleen toxicity up to 5th day after I.v. administration. Myelosupperssion seemed to be lower with ACL-entrapped liposome of PC/PC-hydrate/CHOL/TA (formulation III) than free aclarubicin.

Pharmacokinetics, Cell Toxicity, Antitumor Activity and Spleen/Blood Cell Toxicity of Aclarubicin-entrapped Liposomes (리포좀에 봉입된 아클라루비신의 약물동태, 세포독성, 항암효과 및 비장/혈구 세포독성)

  • Park, Mork-Soon;Park, Jin-Kyu;Lee, Gye-Won;Myung, Pyung-Keun;Sok, Dai-Eun;Hwang, Sung-Joo;Jee, Ung-Kil
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.275-283
    • /
    • 1998
  • Aclarubicin(ACL)-entrapped freeze dried liposomes were prepared using Microfludizer to attain a sustained release at targeted organs in a prolonged time so that it can reduce th e side effect and maximize the therapeutic effect. The freeze-dried liposomes were evaluated for pharmacokinetics, antitumor activity against Sarcoma 180, cytotoxicity against L1210 and A549 tumor cells, spleen toxicity and myelosuppressive action. The $AUC_{0{\rightarrow}8hr}$ values were $122{\pm}42,\;382{\pm}140,\;419{\pm}171,\;835{\pm}206\;and\;443{\pm}309{\mu}g{\cdot}min/ml$ for free ACL. ACL-liposome formulation I, II, III and IV, respectively. Cytotoidcity of ACL-entrapped liposomes against L1210 and A549 tumor cells was 2-4 times higher than that of free aclarubicin. ACL-liposome formulation I(PC/CHOL/TA) showed the most potent antitumor activity against Sarcoma 180 in mice. The loss of body weight was much smaller with ACL-entrapped liposomes than free ACL after I.p. injection at a dose of 2 mg/kg/day. Compared to free ACL, ACL-entrapped liposomes expressed a lower and delayed spleen toxicity up to 5th day after I.v. administration. Myelosupperssion seemed to be lower with ACL-entrapped liposome of PC/PC-hydrate/CHOL/TA (formulation III) than free aclarubicin.

  • PDF