• Title/Summary/Keyword: Acidic metal wastewater

Search Result 27, Processing Time 0.023 seconds

A Study on the Treatment of Dyeing Wastewater Using the Supernatant after Treatment of Acidic Metal Wastewater (중금속 산폐수 처리 후의 상등액을 이용한 염색폐수처리 연구)

  • 신진명;박장진;김미자;주소영
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • Traditionally the supernatant after chemical treatment of metal acid wastewater is discharged in environment. The supernatant can be used as a coagulant as it contains effective metals. The aim of this study is to investigate the feasibility of treatment of dyeing wastewater using the supernatant after treatment by magnesium hydroxide and dolomite($Ca{\cdot}Mg(CO_3)_2$), of acidic metal wastewater. In dyeing wastewater treatment with the supernatant, optimum pH and dosage were determined. COD, turbidity and color were analyzed to evaluate the performance of treatment. In the case of magnesium hydroxide, the optimum dosage was 10%(v/v) for supernatant A and 3%(v/v) for supernatant B. Color, turbidity and COD removal was 99~100%, 85~97% and 43~53%, respectively. In the case of dolomite, the optimum dosage was 10%(v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96~99%, 62~9l% and 52~53%, respectively.

Effective Treatment of Wastewater from the Electroplating Plant of Cold-mill by using Microorganism (냉연공장 도금공정에서 발생되는 폐수의 효율적인 미생물 처리에 관한 연구)

  • Kim, Sang-Sik;Kim, Hyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 2009
  • This research was carried out to establish the effective treatment condition and characteristic of wastewater from the electroplating plant of cold rolling mill by using microorganism. Alkaline wastewater and acidic heavy metal wastewater accounted for 64%, 30%, respectively, of the total wastewater. Highly concentrated thiocyanate was 53890 mg/L as COD and it was 53% of total COD, even though it was 0.03% of wastewater from the electroplating plant. When treating mixed wastewater with microorganism, it was easy to remove when SCN concentrations of mixed wastewater was 200 mg/L or less. While the treatment effect of COD-causing materials was low at the concentration of 400 mg/L or less, it implies that highly concentrated thiocyanate contains a large amount of slowly biodegradable organics. When treating with mixed wastewater, pH was 7.33 at the beginning, but after 8 hours it increased to 7.99. This is caused by ammonia which is generated when SCN of highly concentrated thiocyanate was degraded by microorganism.

Neutralization and removal of heavy metal ions in Plating wastewater utilizing Oyster Shells (굴껍질을 이용한 도금폐수의 중화 및 중금속 이온 제거)

  • 성낙창;김은호;김정권;김형석
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.81-87
    • /
    • 1996
  • The purpose of this research is to examine the utilization of oyster shells for neutralization and removal of heavy metal ions in plating wastewater, because oyster shells have been known to be very porous, to have high specific surface area and to have alkaline minerals such as calcium and magnesium. The results obtianed from this research showed that oyster shells had a buffer capacity to neutralize an acidic.alkali system in plating wastewater. Generally, it could be showed that the removal efficiencies of heavy metal ions were very influenced by reaction times and oyster shell dosages. In point of ocean waste, if oyster shells substituted for a valuable adsorbent such as actviated carbon, they could look forward to an expected economical effect.

  • PDF

Fabrication of K-PHI Zeolite Coated Alumina Hollow Fiber Membrane and Study on Removal Characteristics of Metal Ions in Lignin Wastewater

  • Zhuang, XueLong;Shin, Min Chang;Jeong, Byeong Jun;Lee, Seung Hwan;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.174-179
    • /
    • 2021
  • Recently, hybrid coal research is underway to upgrade low-grade coal. The hybrid coal is made by mixing low-grade coal with bioliquids such as molasses, sugar cane, and lignin. In the case of lignin used here, a large amount of lignin is included in the wastewater of the papermaking process, and thus, research on hybrid coal production using the same is attracting attention. However, since a large amount of metal ions are contained in the lignin wastewater from the papermaking process, substances that corrode the generator are generated during combustion, and the amount of fly ash is increased. To solve this problem, it is essential to remove metal ions in the lignin wastewater. In this study, metal ions were removed by ion exchange with a alumina hollow fiber membrane coated with K-Phillipsite (K-PHI) zeolite. The alumina hollow fiber membrane used as the support was prepared by the nonsolvent induced phase separation (NIPS) method, and K-PHI seeds were prepared by hydrothermal synthesis. The prepared K-PHI seed was seeded on the surface of the support and coated by secondary growth hydrothermal synthesis. The characteristic of prepared coating membrane was analyzed by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX), and the concentration of metal ions before and after ion exchange was measured by Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). The extraction amount of K+ is 86 mg/kg, and the extraction amount of Na+ is 54.9 mg/kg. Therefore, K-PHI zeolite membrane has the potential to remove potassium and sodium ions from the solution and can be used in acidic lignin wastewater.

The Effect of Magnesium and Aluminium Ions on Zeta Potential of Bubbles (수중의 마그네슘과 알루미늄 이온이 기포의 제타전위에 미치는 영향)

  • Han, Moo-Young;Ahn, Hyun-Joo;Shin, Min-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.573-579
    • /
    • 2004
  • Electroflotation, which is used as an alternative to sedimentation, is a separation treatment process that uses small bubbles to remove low-density particulates. Making allowances for recent collision efficiency diagram based on trajectory analysis, it is necessary to tailor zeta potential of bubbles that collide with negatively charged particles. In this paper, the study was performed to investigate the effects of magnesium and aluminium ions on zeta potential of bubbles. And, it was studied to find out factors which could affect the positively charged bubbles. Consequently, zeta potential of bubbles increased both with higher concentration of metal ions and in the acidic pH value. And, a probable principle that explained the procedure of charge reversal could be a combined mechanism with both specific adsorption of hydroxylated species and laying down of hydroxide precipitate. It also depended on the metal ion concentration in the solution to display its capacity to control the bubble surface.

Preparations of the Cross-linked Chitosan Based on a Marine Natural Product with Epichlorohydrine for the Exclusion of Heavy Metal Ions from the Various Wastewater and Its Effect of Crosslinking Ratio (각종 폐수로부터 중금속 이온을 제거하기 위한 Epichlorohydrine-가교키토산의 제조 및 가교도의 효과)

  • Park, Young-Mi;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.5
    • /
    • pp.577-584
    • /
    • 2006
  • The binding of heavy metal ions onto cross-linked chitosan in dilute aqueous solution has been investigated as a function of pH (4.0 and 7.0), agitation period (10-180min) and concentration of various metal cations (5, 10, 50 and 100ppm). In order to obtain adsorbents that are insoluble and stable, and prevent the dissolution loss of chitosan into an acidic aqueous solution, chitosan flakes were cross-linked with epichlorohydrine (ECH) and its adsorption behavior was compared with that of the non cross-linked chitosan. An advantage of ECH is that it does not eliminate the cationic amine functional group of chitosan. In terms of adsorption ratio, the chitosan cross-linked at an ECH was inferior to original chitosan and was found that chitosan has a selectivity much remarkable than the cross-linked chitosan in low concentrated metal solutions. However, no significant decreases in the adsorption ratios were observed between the cross-linked ECH-chitosan and the non cross-linked chitosan concerning the adsorption of $Ni^{2+}$, $Co^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ acidic solution.

Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater (도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구)

  • Chang, Soomin;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.252-259
    • /
    • 2018
  • An acidic, real metal-plating wastewater was treated by a fluidized bed membrane reactor introduced with granular activated carbon (GAC) as fluidized media. With GAC fluidization, there was no increase in suction pressure with time at each flux set-point applied. At neutral solution pH, much less fouling rate was observed than acidic pH under GAC fluidization. Higher solution pH resulted in the increase in particle size in metal-finishing wastewater, thus producing a less dense cake structure on membrane. More than 95% of chemical oxygen demand was observed from the fluidized bed membrane reactor under GAC fluidization. Total suspended solid concentration in membrane permeate was near zero. At the raw wastewater pH, no removal of copper and chromium by the fluidized bed membrane reactor was observed. As the pH was increased to 7.0, removal efficiency of copper and chromium was increased considerably to 99 and 94%, respectively. Regardless of solution pH tested, more than 95% of cyanide was removed possibly due to the strong adsorption of organic-cyanide complex on GAC in fluidized bed membrane reactor.

Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon (활성탄 개질에 따른 표면 특성 변화가 2,4-dichlorophenol 흡착성능에 미치는 영향)

  • An, Sun-Kyung;Song, Won-Jung;Park, Young-Min;Yang, Hyeon-A;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.425-435
    • /
    • 2020
  • Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.

Application of Iron Sand as Adsorbent for the Removal of Heavy Metal (중금속 제거용 흡착제로서의 철광사 적용)

  • Yang, Jae-Kyu;Yu, Mok-Ryun;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1180-1185
    • /
    • 2005
  • Iron sand, having iron as a major component, was applied in the treatment of synthetic wastewater containing Cu(II) or Pb(II). To investigate the stability of iron sand at acidic condition, dissolution of Fe and Al was studied with variation of solution pH ranging from 2 to 4.5. Iron concentration in the extracted solution was below the emission regulation of wastewater even at a strong acidic condition, pH 2. Although an important concentration of aluminum was extracted at pH 2, the dissolution greatly decreased above pH 3. This stability test suggests that application of iron sand has little problem in the treatment of wastewater above pH 3. Adsorption capacity of Cu(II) and Pb(II) onto iron sand was investigated in a batch and a column test. In case of Cu(II), rapid adsorption was noted, showing 50% removal within 2 hrs, and then reached a near complete equilibrium after 24 hrs. Adsorption was favorable at higher pH in each metal ion and showed a near complete removal above pH 6, indicating a typical cationic-type adsorption. From the adsorption isotherm obtained with variation of the concentration of each metal ion, the maximum adsorption capacity of Cu(II) and Pb(II) was identified as 2,170 mg/kg 및 3,450 mg/kg, respectively.

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.