• Title/Summary/Keyword: Acidic environment

Search Result 383, Processing Time 0.023 seconds

Survival of Bifidobacterium breve in Acidic Solutions and Yogurt, Following Immobilization in Calcium Alginate Beads

  • Lee, Ki-Yong;Kim, Ji-Youn;Yu, Won-Kyu;Lee, Yoon-Jong;Yoon, Sung-Sik;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.412-417
    • /
    • 2001
  • Sodium alginate was used to immobilize Bifidobacterium breve ATCC 15700 cells. The ability of the Ca-alginate beads to protect the B. breve ATCC 15700 was evaluated under different conditions including alginate concentration, bead size, pH, hydrogen peroxide, and storage period. The survival of the B. Breve ATCC 15700 was estimated in pasteurized yogurt, containing either the immobilized or free cells, throughout the storage period. The survival cells in bead after exposure to acidic solution (pH 3.0) increased with increase of both the alginate gel concentration and bead size. Also, immobilized cells in alginate bead were more resistant than the free cells to hydrogen peroxide, storage period, and the environment inside yogur. When retreated beads with skim milk and nonretreated beads were tested in acidified pH 3.0 TPY media including acetic and lactic acid, the number of viable cells in the retreated bead was approximately 10-fold higher than that of nonretreated beads. This suggests that the skim milk operated as a material decreasing the diffusion of acid and hydrogen perosicde into alginate gels. From this research, it was found that yogurt itself supported immobilized cells with an improved protection from the extreme acidity in yogurt.

  • PDF

A STUDY ON THE ENAMEL EROSION CAUSED BY ACIDIC BEVERAGE AND REHARDENING BY INTRAORAL EXPOSURE (산성 음료수에 의한 법랑질 침식과 구강내 재경화에 관한 연구)

  • Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.312-322
    • /
    • 1998
  • There are many concerns about the erosive effect of acidic beverage. In this study, the erosive effect of bovine enamel caused by $Pepsi-Cola^{(R)}$(pH 2.41) and rehardening effect by intraoral exposure were determined by microhardness test and SEM. The bovine enamel specimen was imbedded in 100ml $Pepsi-Cola^{(R)}$ during 5 minutes and exposed to the intraoral environment with removable resin plate. The microhardness test was performed after 1 hr, 24 hrs, and 48 hrs. The results obtained from this study can be summarized as follows ; 1. The microhardness value was significantly (p<0.05) reduced by cola beverage, and significantly (p<0.05) increased after 1 hr and 24 hrs respectively. 2. The difference in the microhardness between 24 hrs group and 48 hrs group was not significant (p>0.05) and microhardness value of 48 hrs group was significantly less than that of initial group (p<0.05). 3. The erosive effect of cola beverage and remineralization effect by intraoral exposure were visualized by the SEM photo. But, the enamel surfaces did not return to their original state.

  • PDF

A Study on the Coatings for CP System in the Environment in which Thin Layer of Extremely Acidic Fluids are Formed

  • Chang, H.Y.;So, I.S.;Jin, T.F.;Kim, Y.S.;Yoo, Y.R.;Kang, M.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • A lot of parts in FGD (Flue Gas Desulphurization) systems of fossil-fuel power plants show the environments in which are highly changeable and extremely acidic corrosive medium according to time and locations, e.g. in duct works, coolers and re-heaters etc.. These conditions are formed when system materials are immersed in fluid that flows on them or when exhausted gas is condensed into thin layered medium to contact materials of the system walls and roofs. The environments make troublesome corrosion and air pollution problems that are occurred from the leakage of the condensed solution. The frequent shut-down and repairing works of FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, even the super alloys and Teflon linings sometimes have not been good enough to preventing corrosion. Further more, they are expensive and not easily repairable in short periods of operation stops. In this work, new technology that is effective, economical and easily repairable has proposed to solve the corrosion problems in FGD facilities. This technology contains cathodic protection, coatings and remote monitoring-controlling systems.

Effects of Platinum Nano Electrodeposits on the Corrosion of Carbon Substrate in an Acidic Environment (백금 나노 도금입자가 산성 환경에서 탄소기판 부식에 미치는 영향)

  • Choe, Min-Ho;Park, Chan-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.34-35
    • /
    • 2008
  • We investigated the effects of Pt nano electrodeposits on the corrosion of carbon substrate in an acidic solution. The electrodes for experiments were prepared by electrodepositing Pt on carbon substrate in a solution of 5 mM $H_2PtCl_6$ and 0.5 M $H_2SO_4$ using pulse deposition technique. In cyclic voltammograms for the carbon electrodes with and without Pt nano electrodeposits, total anodic current including both currents from oxygen evolution reaction and carbon corrosion increased abruptly above a critical potential. In addition, the critical potential of the carbon electrodes with Pt nano electrodeposits was lower than that of bare carbon electrode. This phenomenon was more prominent at $75^{\circ}C$ than $25^{\circ}C$. In potentiostatic experiments, the current transients and the corresponding power spectral density increased with increasing the applied potential for the electrodes. Furthermore, the current transients for the carbon electrodes with Pt nano electrodeposits were much higher than those for the bare carbon substrate. This indicates that the corrosion of carbon substrate can be highly accelerated by Pt nano electrodeposits.

  • PDF

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.

Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube (증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동)

  • Shin, Jung-Ho;Lim, Sang-Yeop;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

Analysis of Precipitation Chemistry at Rural Site in the Eastern Coast, Korea

  • Kang, Gong-Unn;Shin, Dae-Ywen;Kim, Hui-Kang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E1
    • /
    • pp.29-39
    • /
    • 2003
  • The 10-day interval basis measurements of precipitation samples at Yangyang, the rural and coastal area on the eastern coast of the Korea peninsula were accomplished for understanding the precipitation chemistry and the temporal variations of major ions September 1991 to February 1997. The precipitation was slightly acidic, and 37% of the samples in winter were pH less than 4.5. The concentrations of cations were found on the order $Na^+\;>\;{NH_4}^+\;>\;Ca^{2+}\;>\;Mg^{2+}\;>\;K^+$ and those of anions followed the pattern $Cl^-\;>\;{SO_4}^{2-}\;>\;{NO_3}^-$. Neglecting sea salt components, the major ions controlling precipitation chemistry were nss-${SO_4}^{2-}$ and ${NO_3}^-$ in anion and ${NH_4}^+$ and nss-$Ca^{2+}$ in cation. Concentrations of these ions were lower than those measured at urban sites in Korea, but were higher than those measured in Japan. Most of nss-${SO_4}^{2-}$ and ${NO_3}^-$ were neutralized by ammonia and calcium species, especially alkaline soil particles in spring and ammonia gas in other seasons. Considering also the annual value of [nss -${SO_4}^{2-}$]/[${NO_3}^-$] ratio of 2.62 and the neutralizing factors, ammonium sulphate compounds were dominant. Annual mean concentrations of these ions showed relatively small fluctuations, while larger seasonal variations were observed with higher levels in spring and winter. Precipitation amount, influence extent of acidic gases and alkaline particles long-range transported from China continent, and energy consumption pattern in each season might be able to explain this seasonal trend.sonal trend.

Effective Treatment of Wastewater from the Electroplating Plant of Cold-mill by using Microorganism (냉연공장 도금공정에서 발생되는 폐수의 효율적인 미생물 처리에 관한 연구)

  • Kim, Sang-Sik;Kim, Hyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 2009
  • This research was carried out to establish the effective treatment condition and characteristic of wastewater from the electroplating plant of cold rolling mill by using microorganism. Alkaline wastewater and acidic heavy metal wastewater accounted for 64%, 30%, respectively, of the total wastewater. Highly concentrated thiocyanate was 53890 mg/L as COD and it was 53% of total COD, even though it was 0.03% of wastewater from the electroplating plant. When treating mixed wastewater with microorganism, it was easy to remove when SCN concentrations of mixed wastewater was 200 mg/L or less. While the treatment effect of COD-causing materials was low at the concentration of 400 mg/L or less, it implies that highly concentrated thiocyanate contains a large amount of slowly biodegradable organics. When treating with mixed wastewater, pH was 7.33 at the beginning, but after 8 hours it increased to 7.99. This is caused by ammonia which is generated when SCN of highly concentrated thiocyanate was degraded by microorganism.

A Study on the Characteristics of Carbonaceous Compounds in PM2.5 Measured in Chuncheon and Seoul (춘천과 서울에서 측정한 PM2.5 내 탄소성분의 농도 특성에 관한 연구)

  • Jung, Jin-Hee;Kim, Sung-Rak;Choi, Bo-Ra;Kim, Kye-Sun;Huh, Jong-Bae;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.2
    • /
    • pp.141-153
    • /
    • 2009
  • $PM_{2.5}$ samples were collected from December 2005 through November 2007 in two cities including Chuncheon and Seoul in order to investigate the characteristics of carbonaceous aerosol. The average $PM_{2.5}$ concentration in Seoul ($43.2{\mu}g/m^3$) was approximately 1.2 times higher than that measured in Chuncheon ($36.1{\mu}g/m^3$), however there was no statistical difference on $PM_{2.5}$ concentration between those two cities. Backward trajectories were passing through Seoul area before arriving Chuncheon for about half of the samples, and $PM_{2.5}$ largely increased in Chuncheon when back-trajectories originated from Seoul area. Total carbon (TC) was calculated as sum of OC and EC, contributing 20.5% and 29.2% to total $PM_{2.5}$ mass in Chuncheon and Seoul, respectively. The average ratio of secondary organic carbon (SOC) to total OC was 40% at both sites, and the highest SOC concentration was observed in summer probably due to enhanced volatilization of organic species and active photochemical reaction. J value was calculated to determine if acidic condition affected the increase of secondary organic carbon. In both Chuncheon and Seoul SOC/OC ratios were fairly enhanced when J<100% of acidic condition.

Effect of pH on soil bacterial diversity

  • Cho, Sun-Ja;Kim, Mi-Hee;Lee, Young-Ok
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • Background: In order to evaluate the effect of pH, known as a critical factor for shaping the biogeographical microbial patterns in the studies by others, on the bacterial diversity, we selected two sites in a similar geographical location (site 1; north latitude 35.3, longitude 127.8, site 2; north latitude 35.2, longitude 129.2) and compared their soil bacterial diversity between them. The mountain soil at site 1 (Jiri National Park) represented naturally acidic but almost pollution free (pH 5.2) and that at site 2 was neutral but exposed to the pollutants due to the suburban location of a big city (pH 7.7). Methods: Metagenomic DNAs from soil bacteria were extracted and amplified by PCR with 27F/518R primers and pyrosequenced using Roche 454 GS FLX Titanium. Results: Bacterial phyla retrieved from the soil at site 1 were more diverse than those at site 2, and their bacterial compositions were quite different: Almost half of the phyla at site 1 were Proteobacteria (49 %), and the remaining phyla were attributed to 10 other phyla. By contrast, in the soil at site 2, four main phyla (Actinobacteria, Bacteroidetes, Proteobacteria, and Cyanobacteria) composed 94 %; the remainder was attributed to two other phyla. Furthermore, when bacterial composition was examined on the order level, only two Burkholderiales and Rhizobiales were found at both sites. So depending on pH, the bacterial community in soil at site 1 differed from that at site 2, and although the acidic soil of site 1 represented a non-optimal pH for bacterial growth, the bacterial diversity, evenness, and richness at this site were higher than those found in the neutral pH soil at site 2. Conclusions: These results and the indices regarding diversity, richness, and evenness examined in this study indicate that pH alone might not play a main role for bacterial diversity in soil.