• Title/Summary/Keyword: Acidic environment

Search Result 386, Processing Time 0.028 seconds

Evaluation of Growth Inhibition Causes on Perennial Ryegrass(Lolium perennial L.) in Afforesting Area (인공배양토 식생지역에서의 페레니얼 라이그래스 생육저해 원인 평가)

  • Lee, In-Bog;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.212-219
    • /
    • 2004
  • To minimize the danger of soil erosion and settle habitats earlier, afforestation, which vegetates bare slopes, is selected as an environmental recovering technology. Large portions of these areas often are suffered by a bad germination and growth inhibition of sprayed seeds. Afforested materials collected in the normal and damaged sites were not any big difference in chemical characteristics and biological response to ryegrass. But background soil of the damaged site has very low pH (3.6) and high contents of iron and aluminum compared with them of the normal sites. Both germination and root growth of ryegrass were inhibited severely in the water extracts of damaged soils, but not in the water extracts of normal sites. Groundwater collected nearby the damaged sites was very strong acidic (pH 33) and exhibited a high value of electrical conductivity and high contents of iron and aluminum. In the ground water, germinated ryegrass was scarcely grown. In Al standard solution, the root growth of ryegrass was inhibited over 50% in 0.5 mM in pH 3.5-4.5 and in 1.4 mM in pH 5.5, which seems to be related to $Al^{3+}$ activity in solution. In the ferric Fe ($Fe^{3+}$) standard solution, ryegrass growth was inhibited over 50% in the concentration of 14-19 mM in root and 23-25 mM in shoot. This strong tolerance of ryegrass to $Fe^{3+}$ might be concerned with the very low activity of $Fe^{3+}$ at pH 3.5-5.5. In contrast, ryegrass responded very sensitively to ferrous Fe ion ($Fe^{2+}$), especially in root growth: $Fe^{2+}$ concentrations corresponding to 50% growth reduction were 0.3-0.4 mM at pH 3.5-5.5 in roots. This high growth inhibition should be related to the high ion activity of $Fe^{2+}$ irrespective of different pH conditions. In conclusion, low pH and high contents of $Fe^{2+}$ and aluminum seem to be caused by pyrite and be closely related to the growth inhibition of ryegrass seeded in afforested area.

Water Quality and Hydrochemistry of Natural Springs and Community Wells in Daejeon Area (대전지역 자연샘물 및 공동우물의 수질 및 수리화학적 특성)

  • 정찬호;박충화;이광식
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.395-406
    • /
    • 2002
  • The sixty natural springs and community wells used as a drinking water in the Daejeon area are mainly located at the parks and the natural green districts. The purpose of this study is to investigate the characteristics of water quality and the contamination of the springs and the wells, and to suggest the management strategy for the springs and wells. For this study, we undertook water quality data from Daejeon City. According to the statistic analysis of water quality data, unacceptable rate as a drinking water was about 28 percent in 1999 and 24.5 percent in 2000, respectively. Major unacceptable factor is coliform, and others are bacteria, yersinia, color, turbidity, Fe and F. The unacceptable rate shows a roughly positive relationship with precipitation, that is, it shows highest rate during a rainy season between June and September. The major contamination source is likely to be the excrement of wild animals around natural springs and wells. Most of springs are vulnerable to the contamination of coliform and bacteria because of short residence time and shallow circulation in subsurface environment. The water samples collected from 31 springs or wells show weak acidic pHs, the electrical conductivity ranging from 63 to 357 $\mu\textrm{S}$/cm, and the hydrochemical types of Na(Ca)-HC0$_3$ and Ca-HC0$_3$. The groundwater samples of low total dissolved solid(TDS) belong to Na(Ca)-HC0$_3$. type, and the groundwater of high total dissolved solid is shifted towards Ca-HC0$_3$ type in the chemical composition. These hydrochemical characteristics indicate that most natural springs is in the early stage of geochemical evolution. The natural springs should be closed during a rainy season, which shows a high contamination rate. We suggest that a protection barrier around the springs should be built to keep wild animals away from the springs.

Oxygen and Hydrogen Isotope Studies of the Hydrothermal Clay Deposits and Surrounded Rocks in the Haenam Area, Southwestern Part of the Korean Peninsula (한국 서남부, 해남지역의 열수 점토광상과 주변암에 대한 산소 및 수소동위원소 연구)

  • Kim, In Joon;Kusakabe, Minoru
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • In the present study, three representative hydrothermal clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were selected for oxygen and hydrogen isotope studies. Oxygen and hydrogen isotopic compositions of quartz, sericite, alunite and kaolin minerals from Seongsan, Ogmaesan, Haenam deposits and surrounded rocks of clay deposits have been measured. The ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite in the Seongsan mine are +8.4 to +11.1‰, +3.6 to 5.4‰, +4.8 to +5.8‰ and + 3.0 to +6.6‰, respectively. In the Ogmaesan mine, the ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite are +8.0 to +13.6‰, +2.8 to +6.7‰, +4.8 to +8.4‰ and +0.9 to +2.4‰, respectively. The ${\delta}^{18}O$ values of the Haenam mine range from +7.9 to +10.1‰ for quartz and from +4.5 to +6.5‰ for sericite. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.0 to + 7.8‰ for the granitic rocks. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.2 to + 10.7‰ for the volcanic rocks. The 8D values of kaolin, sericite and alunite in the Seongsan mine are -78 to -86‰, -71 to -90‰ and -43 to -77‰, respectively. In the Ogmaesan mine, the ${\delta}D$ values of kaolin, sericite and alunite are -73 to -80‰, -74 to -88‰ and -57 to -98‰, respectively. The ${\delta}D$ values of the Haenam mine range from -76 to -85‰ for sericite. The ${\delta}D$ values of the whole-rocks range from -77 to -105‰ for the granitic rocks. The ${\delta}D$ values of the wholerocks range from -76 to -100‰ for the volcanic rocks. The main result obtained oxygen and hydrogen isotope data can lead to the following interpretations on the origin of hydrothermal fluids in the clay deposits: Through the oxygen isotopic study, the formation temperature of the clay deposits was estimated from the coexisting minerals such as quartz-kaolin minerals and -sericite. Formation temperature of the acidic alteration zone is 165 to $280^{\circ}C$ in the Seongsan deposits, 175 to $250^{\circ}C$ in the Ogmaesan deposits and 250 to $350^{\circ}C$ in the Haenam deposits. Three clay deposits has been formed by magmatic water mixed with meteoric water. Furthermore, from this isotopic data, it is clarified that kaolin minerals and alunite are hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced in the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems. Oxidation of the $H_2S$ is thought to be generated when the vapor phase generated by boiling of the deep-seated water under the water table.

  • PDF

Elucidation of Dishes High in N-Nitrosamines Using Total Diet Study Data (총식이조사 자료를 이용한 음식별 니트로사민 함량 분포 규명)

  • Choi, Seul Ki;Lee, Youngwon;Seo, Jung-eun;Park, Jong-eun;Lee, Jee-yeon;Kwon, Hoonjeong
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.361-368
    • /
    • 2018
  • N-nitrosamines are probable or possible human carcinogens, which are produced by the reaction between secondary amines and nitrogen oxide in the acidic environment or by heating. Common risk assessment procedure involves the comparison between exposures expressed in the unit, mg/kg body weight/day and the Health-Based Reference dose expressed in the same unit. This procedure is suitable for the policy decision-making and is considered as inappropriate for the consumers to get information about their dietary decision-making. Therefore, the distributions of NDMA (N-nitrosodimethylamine), NDBA (N-nitrosodibutylamine), the six N-nitrosamines (NDMA, NDBA, NDEA (N-nitrosodiethylamine), NPYR (N-nitrosopyrrolidine), NPIP (N-nitrosopiperidine), and NMOR (N-nitrosomorpholine) in the menus grouped based on the presence of main ingredients and cooking methods were analyzed to generate consumer-friendly information regarding food contaminants. Recipes and intakes were taken from 2014 to 2016 KNHANES (The Korean National Health and Nutrition Examination Survey) and only the data from ages of 7 years or older were used. The contamination data were collected from the 2014~2016 Total Diet Study and all the analysis were performed using R software. Rockfish, eel, anchovy broth and pollock were mainly exposed to N-nitrosamines. In terms of cooking methods, soups and stews appeared to contain the highest amount of N-nitrosamines. Cereals, fruits, and dairy products in the ingredient categories, and rice dishes and rice combined with others in recipe categories had the lowest level exposure to N-nitrosamines. In case of N-nitrosamines, unlike other cooking related food contaminants, boiled dishes such as soups and stews and dishes mainly consisting of fishes and shellfishes had highest level of exposure, showing a large discrepancy with the previous thought of processed meat is the main source of N-nitrosamines.

An Experimental Study of Corrosion Characteristics and Compounds by Corrosion Factors in Iron Artifacts (철제유물 부식인자에 대한 부식양상 및 부식화합물 실험 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.33-43
    • /
    • 2012
  • The corrosion phenomena of the iron artifacts was studied by morphology observation and instrumental analysis(EDS, XRD, Raman) with various corrosion factors in oder to verify to confirm the danger of corrosion factors. Corrosion compounds were collected by depositing pure Fe powder(99%) into a HCl, $HNO_3$, $H_2SO_4$, and $H_2O$ solution which contained the corrosion factors. Stereoscopic-microscope observations were then conducted determine the colors and shapes of the collected corrosion compounds, and SEM-EDS analysis was conducted to confirm the corrosion factors and the growth of these compounds. X-ray diffraction (XRD), Raman analyses were conducted to examine the crystal structure and compositions of the created corrosion compounds. The results of the experiment revealed that corrosion speed was faster in an acidic environment and corrosion of HCl and $H_2SO_4$ was greater than that of $HNO_3$. The corrosion compounds of HCl grew into a needle or chestnut-like shape after being affected by Cl- ion, and XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $H_2SO_4$ was affected by S ion and grew into a slender-needle-like or cylindrical shape, and the XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $HNO_3$ grew into a spherical or plate-like shape after being affected by O ion and the XRD and Raman analyses detected magnetite and lepidocrocite. Although the corrosion compounds of $H_2O$ grew into a spherical or plate-like shape after being affected by O ion, most of them were observed to have had spherical shapes, and the XRD and Raman analyses failed to detect corrosion compounds in them. It was found in the study that corrosion characteristics and compounds are diversely displayed according to the corrosion factor.

  • PDF

Quality Characteristics of Yulmoo Mul-kimchi Containing Saltwort (Salicornia herbacea L.) (함초 분말 첨가 열무 물김치의 품질특성)

  • Park, Jung-Eun;Lee, Jae-Yong;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.1006-1016
    • /
    • 2011
  • Saltwort (Salicornia herbacea L.), as a natural additive for regulating Mul-kimchi fermentation, was assessed for physicochemical and sensory characteristics of Yulmoo Mul-kimchi during storage. Saltwort in the form powder was directly added to the Yulmoo Mul-kimchi preparation at 0 (control), 1, 3, 5, and 7% (w/v) per weight of salt to evaluate their physicochemical, sensory, and microbiological characteristics in storage at $10^{\circ}C$ for 30 days. The pH values of all treatments were high, indicating a less acidic environment in all treatments compared to those of the control sample throughout the preservation period. Total acidity increased with storage time as is usually seen with normal kimchi fermentations, whereas the increases were more gradual in the 3 and 5% treatments. The increases in total vitamin C continued until days 6 (control) to 13 (7%), and were different according to the amount of added saltwort and then they decreased after each peak. The fluctuation in reducing sugars fol owed a similar trends of total vitamin C content by showing an initial increase, followed by a decrease based on the saltwort concentration and storage day. The 5% treatment was most effective for suppressing the increase in turbidity among all treatments. The 3 and 5% treatments showed the highest lactic acid bacteria counts during the entire preservation period. In the sensory evaluation results, adding saltwort at more than 3% concentration attained an overall higher scores of acceptability with respect to color, smell, taste, fresh taste, sour taste, crisp, and overall acceptability characteristics. In conclusion, adding saltwort, particularly at concentrations of 3 and 5% extended the preservation period of Yulmoo Mul-kimchi by retarding fermentation effectively.