• Title/Summary/Keyword: Acidic Contaminants

Search Result 30, Processing Time 0.028 seconds

Fixation Mechanism and Leachability of Heavy Metal for Sludge Solidified by Silica Fume and Cement (실리카흄을 이용한 중금속함유 유기성 슬러지 시멘트 고화체의 용출특성과 고정화기작에 관한 연구)

  • Jun, Kwan-Soo;Hwang, Byung-Gi
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.180-186
    • /
    • 2005
  • This paper discusses the development of mixtures for silica fume as a stabilization/solidification agent and a binder for industrial wastewater residue containing organic and heavy metal contaminants. The UCS (unconfined compressive strength) gradually increased to 66.7% as the silica fume content increased to 15%. The leaching of TOC (total organic carbon) and chromium decreased as more OPC (Ordinary Portland Cement) was substituted with the silica fume. When a mixture had 5% silica fume, it retained about 85% TOC, and chromium leached out 0.76 mg-Cr/g-Cr in acidic solution. Also, microstructural studies of the solidified analysis showed that the silica fume caused an inhibition to the ettringite formation which did not contrilbute to setting but coated the cement particles and retarded the setting reactions. The results indicated that the incorporation of silica fume into the cement matrix minimized the detrimental effects of organic materials on the cement hydration reaction and the contaminant leachability.

Effects of waste dumpsites on geotechnical properties of the underlying soils in wet season

  • Essienubong, Ikpe Aniekan;Okechukwu, Ebunilo Patrick;Ejuvwedia, Sadjere Godwin
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.289-297
    • /
    • 2019
  • Indiscriminate disposal of waste and citation of open dumpsites are some of the key factors affecting the various soil geotechnical properties. Atterberg limit and consolidation tests were conducted to determine the effects of two open waste dumpsites (Uselu Market and New Benin) on geotechnical properties of their underlying soils. Soil sample collected from Uselu Market dumpsite in Benin City metropolis showed slightly lower hydraulic conductivity (K) of $1.0{\times}10^{-6}$ with plasticity index of 18.53% compared to sample collected 1.6 m from the same dumpsite which had high K value of $2.42{\times}10^{-3}$ with plasticity index of 6.9%. Soil sample collected from New Benin dumpsite in Benin City metropolis showed slightly lower K of $1.45{\times}10^{-6}$ with plasticity index of 13.8% than sample collected 1.6 m from the same dumpsite which had high K value of $2.14{\times}10^{-2}$ with plasticity index of 6.0%. X-ray florescent analyser (X-MET 7000) and direct soil pH meter were used to determine the composition of the aforementioned soil samples. The result of samples collected from both dumpsites indicated a low hydraulic conductivity compared to samples collected 1.6 m from both dumpsites. Also, the chemical composition and pH of both dumpsite underlying soils indicated high level of soil contaminants with pH of 3.3 and 3.5 which is very acidic unlike pH of other samples which were in the neutral range (6.8-7.1). Hence, a liner is recommended for all dumpsites or engineered landfill systems to mitigate against the challenges associated with open waste dumping system in the environment.

Absorbance Elevation of Orimax Blue 2N, Orimax Green 151, Quinizarin, Topasol (P-250) and Lubricant (P-8) on the Spectrophotometric Analysis of Unimark 1494 DB (식별제(Unimark 1494DB) 정량시험에서 파란색 색소(Orimax Blue 2N, Orimax Green 151), Quinizarin, 토파졸(P-250) 및 윤활유 원료(P-8)의 흡광도상승 효과)

  • Lee, Ji-Yun;Kim, Chang-Jong
    • YAKHAK HOEJI
    • /
    • v.50 no.5
    • /
    • pp.313-321
    • /
    • 2006
  • There are three kinds of liquid petroleum marker which is extracted by the basic or acidic, and both developer. Korean marker, Unimark 1494 DB (marker) have been spectrophotometrically analysed by the determination of absorbance at 582 nm after base extraction by Unimark 1494 DB Developer C-5 (developer). Some blue dyes which have same reactive radical of marker and can be changed deep blue color in base developer extraction (BDE), may be increased absorbance at 582 nm, but dyes or markers which can be increased the absorbance, were not unclear. In this experiment, effects of three dyes or marker such as Orimax Green 151 (the mixture of CI Solvent Yellow 16 and CI Solvent Blue 70), quinizarin and Orimax Blue 2N (CI Solvent Blue 35), and two solvent such as topasol (P-250) and lubricant (P-8) on the absorbance were studied by HITACHI Recording Spectrophotometer U-3300. It shows that all of them increased absorbance at 582 nm after BDE. Absorbance at 582 nm can be showed 0.0544 by Orimax Green 151 at the concentration of 3.96 mg/l, quinizarin at the concentration of 1.38 mg/l, and Orimax Blue 2N at the concentration of 2.73 mg/l in the artificial petroleum (normal diesel oil: topasol: lubricant=2 : 4: 4), respectively. Absorbance, 0.0544 indicates that concentration of marker is 1.64 mg/l in the reference curves, respectively. And also these results can be showed that the artificial petroleum have about 10% cheep fuel such as kerosene which have marker (16.0 mg/l). Absorbance of P-250 was 0.01361-0.22842 depending upon the purchasing date, and that of P-8 was 0.05644. pH of developer was 14.83, and so this result indicates that Unimark 1494 DB is a base extractable petroleum marker, phenylazophenol (US Patent No. 5,252,106). In the BDE, the slight color of Orimax Blue 2N, Orimax Green 151 and quinizarin in artificial petroleum changed to deep bright blue color, respectively. These result indicate that the absorbance at 582 nm by BDE may be increased not only by azo, diazo, amine and ketone (anthraquinone, coumarin) dyes or markers, but also the contaminants of P-250 and P-8 which have same as reactive radical of dyes or markers.

Electrokinetic Remediation of Soil Contaminated with Zn, Ni and F (동전기 정화기술을 이용한 Zn, Ni, F 복합오염 토양의 정화)

  • Cho, Jung-Min;Ryu, Byung-Gon;Park, Sung-Woo;Kim, Kyeong-Jo;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2009
  • The feasibility of electrokinetic remediation was investigated in the laboratory to treat contaminated soil with Zn, Ni and F. Electro-migration and electro-osmosis are the major removal mechanisms because fluorines desorbed from soil exist as an anionic form in soil pores, and Zn and Ni exist as a cationic form. Desorption of fluorine was enhanced under the alkaline condition, but that of Zn and Ni increased under the acidic condition. Sequential pH control was effective to control the mixed wastes from contaminated soil. 2 V/cm was applied to reactor to evaluate the effect of constant voltage gradient, after two weeks, the removal efficiency of Zn, Ni and F was 20.5%, 2.5% and 57.4%, respectively. Even though the removal of Zn and Ni was very low, the pH control enhanced transport of Zn and Ni significantly. As a result, sequential pH control is a effective method to remediate mixed waste-contaminated soil.

The Study on Optimum Operation Conditions of Ceramic MF Membrane Process in Y Water Treatment Plant (Y 정수장 세라믹막 여과공정 최적 운영인자 평가)

  • You, Sang-Jun;Ahn, Hyo-Won;Park, Sung-Han;Lim, Jae-Lim;Hong, Sung-Chul;Yi, Pyong-In
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • This study was performed to discover the optimum operation conditions for the advanced water treatment using the ceramic membrane, introduced the first in the nation at the Y water treatment plant (WTP). The result of investigation to find the optimum operation conditions which can continue preserving the filtration performance as well as satisfying both the economics and the water quality is as follows. In the ordinary water quality condition of the Y WTP, the optimum filtration time(the backwash period), which can minimize the production of backwash waste and preserve the membrane performance was examined to be 4.0 hours on basis of institution capacity ($16,000m^3/day$). Examining the recovery rate of TMP from the chemical cleaning (CIP) discovered that the inorganic contaminants, which cause membrane fouling, such as iron, manganese, aluminum, were removed through the acidic cleaning using citric acid, whereas the membrane recovery rate was found to be low. But, on the other hand, the TMP was recovered to the initial value from the alkali cleaning using the NaOCl. Therefore, the main contaminant causing the fouling was determined to be hydrophilic organic compound( biopolymer). The membrane recovery rate is highly influenced by the temperature of the cleaning chemical. That is, the rate increased with increasing temperature.

Texturing Multi-crystalline Silicon for Solar Cell (태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제)

  • Ihm, DaeWoo;Lee, Chang Joon;Suh, SangHyuk
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Lowering surface reflectance of Si wafers by texturization is one of the most important processes for improving the efficiency of Si solar cells. This paper presents the results on the effect of texturing using acidic solution mixtures containing the catalytic agents to moderate etching rates on the surface morphology of mc-Si wafer as well as on the performance parameters of solar cell. It was found that the treatment of contaminated crystalline silicon wafer with $HNO_3-H_2O_2-H_2O$ solution before the texturing helps the removal of organic contaminants due to its oxidizing properties and thereby allows the formation of nucleation centers for texturing. This treatment combined with the use of a catalytic agent such as phosphoric acid improved the effects of the texturing effects. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell. Employing this technique, we were able to fabricate mc-Si solar cell of 16.4% conversion efficiency with anti-reflective (AR) coating of silicon nitride film using plasma-enhanced chemical vapor deposition (PECVD) and Si wafers can be texturized in a short time.

Archaeogenetic Research of Excavated Human Bones from the Ancient Tombs (분묘 유적지 출토 인골에 대한 고고유전학 연구)

  • Jee, Sang Hyun;Chung, Yong Jae;Seo, Min Seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.41 no.1
    • /
    • pp.99-108
    • /
    • 2008
  • The paleogenetic analysis has become an increasingly important subject of archaeological, anthropological, biological as well as public interest. Recently, scientific research for human skeletal remains was more activated because of increasing awareness of the valuable archaeological information by the ancient DNA analysis. State of preservation of organic remains vary in different soil and burying environmental condition. Almost all available tissue disappear to analysis ancient DNA of bone in acidic soil caused by climate and geological features in Korea. Many preserved human remains excavated in the 'Heogwakmyo'(limelayered tomb of Chosun Dynasty Period) is able to explain through the relationship between burial conditions and bone survival form the burial method and ceremony. Ancient DNA analysis of excavated human bone form ancient tomb requires to remove contaminants such as microorganism's DNA and soil components that affect authentic results. Particularly, contamination control of contemporary human DNA is major serious problem and should verified by criteria of authenticity. In order to understand migration and culture of ancient population, when possible, ancient DNA studies needs to go abreast both radiocarbon and stable isotope studies because the dietary inferences will suggest ancient subsistence and settlement patterns. Also when the paleogenetic research supported with the arts and humanities research such as physical anthropology and archaeology, more valuable ancient genetic information is providing a unique results about evolutionary and population genetics studies to reconstruct the past.

Elucidation of Dishes High in N-Nitrosamines Using Total Diet Study Data (총식이조사 자료를 이용한 음식별 니트로사민 함량 분포 규명)

  • Choi, Seul Ki;Lee, Youngwon;Seo, Jung-eun;Park, Jong-eun;Lee, Jee-yeon;Kwon, Hoonjeong
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.361-368
    • /
    • 2018
  • N-nitrosamines are probable or possible human carcinogens, which are produced by the reaction between secondary amines and nitrogen oxide in the acidic environment or by heating. Common risk assessment procedure involves the comparison between exposures expressed in the unit, mg/kg body weight/day and the Health-Based Reference dose expressed in the same unit. This procedure is suitable for the policy decision-making and is considered as inappropriate for the consumers to get information about their dietary decision-making. Therefore, the distributions of NDMA (N-nitrosodimethylamine), NDBA (N-nitrosodibutylamine), the six N-nitrosamines (NDMA, NDBA, NDEA (N-nitrosodiethylamine), NPYR (N-nitrosopyrrolidine), NPIP (N-nitrosopiperidine), and NMOR (N-nitrosomorpholine) in the menus grouped based on the presence of main ingredients and cooking methods were analyzed to generate consumer-friendly information regarding food contaminants. Recipes and intakes were taken from 2014 to 2016 KNHANES (The Korean National Health and Nutrition Examination Survey) and only the data from ages of 7 years or older were used. The contamination data were collected from the 2014~2016 Total Diet Study and all the analysis were performed using R software. Rockfish, eel, anchovy broth and pollock were mainly exposed to N-nitrosamines. In terms of cooking methods, soups and stews appeared to contain the highest amount of N-nitrosamines. Cereals, fruits, and dairy products in the ingredient categories, and rice dishes and rice combined with others in recipe categories had the lowest level exposure to N-nitrosamines. In case of N-nitrosamines, unlike other cooking related food contaminants, boiled dishes such as soups and stews and dishes mainly consisting of fishes and shellfishes had highest level of exposure, showing a large discrepancy with the previous thought of processed meat is the main source of N-nitrosamines.

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).

Uptake of Heavy Metal Ions by Water Dropwort (Oenanthe stolonifera DC.) and Identification of Its Heavy Metal-Binding Protein (미나리의 중금속 흡수량 측정 및 중금속 결합단백질의 동정)

  • Park, Young-Il;Kim, Hee-Guen;Kim, Yoo-Young;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.494-500
    • /
    • 1996
  • Uptake of hen metal ions by water dropwort (Oenanthe stolonifera DC.) and its cadmium-binding protein were studied to probe for good method to remove heavy metal contaminants from environments. The plant was cultured in the culture medium (pH 7.0) containing the various concentrations of $Cd^{2+}$, $Cr^{3+}$ or $Pb^{2+}$, for 3 and 7 days. The residual heavy metals deposited in roots linearly increased as the metal ions concentration increased up to 17 ppm for $Cd^{2+}$, 20 ppm for $Cr^{3+}$ and 50 ppm for $Pb^{2+}$. Above these concentrations, the plant growth was inhibited and the uptake rates of the metal ions decreased. The heavy metals absorbed by the plant were mostly deposited in roots. In particular, the residual concentration of lead in roots was about four times higher than those of cadmium and chromium. When cultured in the medium containing 20 ppm of each metal ion, 80% of cadmium, 90% of cromium and 96% of lead were deposited in roots out of the total residual metal ions in the plant. These values correspond to 6.1 mg of cadmium, 5.2 mg of chromium and 23.6 mg of lead per one gram of roots tissue on a dry weight basis. A cadmium-binding protein was partially purified by extraction, gel filtration and DEAE-Cellulose chromatography from water dropworts that was grown in the medium containing 20 ppm $Cd^{2+}$. The purified protein was a single band on SDS- and non-denaturing- polyacrylamide gel electrophoresis. Its molecular mass was estimated to be ca. 5,000 dalton by gel filteration. Analysis of amino acid composition of the protein indicated that it had a typical amino acid composition of heavy metal-binding protein in that it contained 27% of acidic amino acids and 9.9% of cysteine. However, it is likely that the protein is a new plant metal-binding protein, since its amino acid composition is somewhat different from those of phytochelatins that have been known so far.

  • PDF