• Title/Summary/Keyword: Acid-hydrolysis

Search Result 1,329, Processing Time 0.038 seconds

Evaluation on the utilization possibility of waste mushroom logs as biomass resource for bioethanol production (바이오에탄올 생산을 위한 바이오매스 자원으로서 버섯골목의 이용 가능성 평가)

  • Lee, Jae-Won;Koo, Bon-Wook;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.485-488
    • /
    • 2006
  • In order to investigate the possibility of waste mushroom logs as biomass resource chemical and physical characteristics of normal woods and waste mushroom logs such as crystallinity value, energy consumption, total sugar yield after hydrolysis chemical compounds and molecular weight distribution after acid hydrolysis, were examined. In the results, crystallinity of waste mushroom logs which were three year passed after the inoculation was decreased drastically from 49% to 33% during the cultivation. Lignin contents as chemical compounds of normal woods and waste mushroom logs were 21.07% and 18.78%, respectively. By the results of measurement of energy consumption, the size reduction of normal woods required a significantly higher energy than that of waste mushroom logs. In the hydrolysis, total sugar yield by enzyme and acid hydrolysis were high in waste mushroom logs(53% 57.5%) than in normal woods(42.9%, 47.17%). According to the molecular weight distribution using GPC, low molecular weight compounds were distributed in waste mushroom logs. Based on these results, waste mushroom logs have enough potential as material for developing alternative energy because of easily conversion to sugar by various hydrolysis methods and requirement of low energy consumption during size reduction.

  • PDF

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Effects of Heat Treatment on Antioxidant Activity of Hydrolyzed Mung Beans (녹두 가수분해물의 항산화활성에 미치는 열처리 효과)

  • Kim, Min Young;Lee, Sang Hoon;Jang, Gwi Yeong;Kim, Hyun Young;Woo, Koan Sik;Hwang, In Guk;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • This study was performed to investigate the antioxidant activity of mung beans with heat treatment at $130^{\circ}C$ for 2 h after acid hydrolysis. The browning index of heating after hydrolysis was 2.31 whereas heating before hydrolysis was 0.17. 5-hydromethyl-2-furaldehyde (5'-HMF) content was the highest value of 81.61 mg/g in heating after hydrolysis. The highest total polyphenol content (55.95 mg/g) occurred in heating after hydrolysis and this value was 6.4-fold higher than that of heating before hydrolysis (8.79 mg/g). 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity was the highest value of 22.19 mg AA eq/g sample in heating after hydrolysis whereas heating before hydrolysis was 1.75 mg AA eq/g sample.1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity was the highest value of 3.64 mg Trolox eq/g sample in heating after hydrolysis whereas heating before hydrolysis was not shown. These results suggest that heat treatment of mung beans for increasing the antioxidant activity could be effective after hydrolysis.

Development of Auto-hydrolysis Method for Preparing Cotton Linter Regenerated Fibers of Textile Fabrics (방직용 재생펄프 제조를 위한 면 린터의 자기가수분해 공정 개발)

  • Sohn, Ha Neul;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.81-88
    • /
    • 2015
  • The molecular weight (MW) and crystallinity of cotton linter need to be controlled to be dissolved well in N-methylmorpholine N-oxide (NMMO) solvent for manufacturing regenerated fibers of clothing fabrics. Electron beam irradiation or sulfuric acid pre-treatment followed by alkaline peroxide bleaching has been used to control MW effectively and to improve brightness of cotton linter. Auto-hydrolysis of cotton linter without electron beam irradiation or chemical pre-treatment was found to be effective as an alternative pre-treatment method. Removal of metal ions, that hampered dissolution of cotton linter by NMMO, was also investigated when the auto-hydrolysis was accompanied with ionic polymers and chelating agent.

Acid and Nucleophile Catalysed Hydrolyses of Benzenesulfinamides (벤젠술핀아미드의 가수분해반응에서 산 및 할라이드 이온의 촉매작용)

  • Lee, Jong-Pal;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1906-1909
    • /
    • 2010
  • Acid and halide ion catalyses for the hydrolysis of benzenesulfinamides were kinetically investigated. The rates of hydrolysis increased with increasing concentration of both acid and halide ions and also showed to speed up as the electron donating ability of the benzenesulfinyl moiety and the electron withdrawing ability in the leaving group increased. The reactivity of halide ions was in the order of $Br^-$ > $Cl^-$. The reaction mechanism may be accommodated by including a hypervalent intermediate and sulfonium cation.

Hydrolysis of Polylactic Acid Fiber by Lipase from Porcine pancreas

  • Lee, So-Hee;Song, Wba-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.6
    • /
    • pp.670-677
    • /
    • 2011
  • This study is to optimize the enzymatic processing conditions of Polylactic Acid (PLA) fiber using lipase from Porcine pancreas as an environmental technology. Hydrolytic activity dependent on pH, temperature, enzyme concentration, and treatment time, and structural change of PLA fiber were evaluated. The PLA fiber hydrolysis by lipase was maximized at 50% (o.w.f) lipase concentration $50^{\circ}C$ for 120 minutes under pH 8.5. There was a change of the protein absorbance in the treatment solution before and after the lipase treatment. In addition, there was no substantial change in the molecular and crystalline structures of PLA by lipase treatment as confirmed by DSC, XRD, and FT-IR.

Mechanism of Alcohol Decrease by Acid Hydrolsis of Hovenia dulcis Extract

  • Kang, Sung-Hee;Kim, Sung-Mun;Kim, Jin-Hyun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.530-534
    • /
    • 2005
  • This work was a method that used an acid hydrolysis for increasing the efficacy of decreasing alcohol concentration from Hovenia dulcis extract. The best pH was 2.0 to obtain a maximum alcohol dehydrogenase activity at fixed reaction temperature and time. At pH 2.0, reaction temperature $80^{\circ}C$ and reaction time 4hr gave the highest activity which was 124% of control. The bioactive compound, (+)-dihydromyricetin, content increased to 30% after acid hydrolysis. This is very simple and efficient method to increase the efficacy of decreasing alcohol concentration from Hovenia dulcis extract. The mechanism that increase the efficiency of alcohol decrease be examined through hydrolysis.

  • PDF

Theoretical Studies on the Acid-Catalyzed Hydrolysis of Sulfinamide

  • 김찬경;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.880-886
    • /
    • 1997
  • Ab initio calculations were carried out on the gas phase acid-catalyzed hydrolysis reactions of sulfinamide using the 3-21G* basis sets. Single point calculations were also performed at the MP2/6-31G* level. The first step in the acid-catalyzed hydrolysis of N-methylmethanesulfinamide, Ⅰ, involves protonation. The most favorable form is the O-protonated one, Ⅱ, which is then transformed into a sulfurane intermediate, Ⅲ, by addition of a water molecule. The reaction proceeds further by an intramolecular proton transfer from O to N (TS2), which is followed by N-S bond cleavage (TS3) leading to the final products. The rate determining step is the N-S bond cleavage (TS3) at the RHF/3-21G* level, whereas it becomes indeterminable at the MP2/6-31G*//3-21G* level of theory. However, the substituent effect studies with N-protonated N-arylmethanesulfinamide, ⅩⅢ, at the MP2/6-31G*//3-21G* level support the N-S bond breaking step as rate limiting.

Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-Hydrolysis and Response Surface Methodology (산가수분해법과 반응표면분석법을 이용한 해조류 청각으로부터 레불린산의 생산)

  • Jeong, Gwi-Taek;Park, Don-Hee
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • This work is focused on the possibility of marine biomass Codium fragile as renewable resources for production of levulinic acid. In an effort to optimize the reaction conditions of levulinic acid production from Codium fragile, response surface methodology was applied. A total of 18 individual experiments were designed to investigate the effect of reaction temperature, catalyst amount, and reaction time. As a result, 4.26 g/L levulinic acid from Codium fragile was produced in the condition of $160.7^{\circ}C$ of reaction temperature, 3.9% of sulfuric acid, and 39.1 min of reaction time. This result will provide the useful information for chemical production from marine resource.

Studies on Identification of the Anthocyanins in Raspberries (나무딸기 Anthocyanin에 관한 연구)

  • Joo, Kwang Jee;Park, Jung Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.31-36
    • /
    • 1983
  • The anthocyanins isolated from raspberries, were studied by column chromatography on polyvinylpyrroldone, paper chromatography, total hydrolysis, partial hydrolysis, color classification and spectroscophy. Four individual pigments were identified as cyanidin 3 digalactoside with caffeic acid, cyanidin 3 diglucoside with caffeic acid, cyanidin-3, 5-diglucoside with caffeic acid and cyanidin-3-monoglucoside with caffeic acid, respectively.

  • PDF