• Title/Summary/Keyword: Acid resistance

Search Result 1,937, Processing Time 0.029 seconds

Altered Cultivar Resistance of Kimchi Cabbage Seedlings Mediated by Salicylic Acid, Jasmonic Acid and Ethylene

  • Lee, Young Hee;Kim, Sang Hee;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • Two cultivars Buram-3-ho (susceptible) and CR-Hagwang (moderate resistant) of kimchi cabbage seedlings showed differential defense responses to anthracnose (Colletotrichum higginsianum), black spot (Alternaria brassicicola) and black rot (Xanthomonas campestris pv. campestris, Xcc) diseases in our previous study. Defense-related hormones salicylic acid (SA), jasmonic acid (JA) and ethylene led to different transcriptional regulation of pathogenesis-related (PR) gene expression in both cultivars. In this study, exogenous application of SA suppressed basal defenses to C. higginsianum in the 1st leaves of the susceptible cultivar and cultivar resistance of the 2nd leaves of the resistant cultivar. SA also enhanced susceptibility of the susceptible cultivar to A. brassicicola. By contrast, SA elevated disease resistance to Xcc in the resistant cultivar, but not in the susceptible cultivar. Methyl jasmonate (MJ) treatment did not affect the disease resistance to C. higginsianum and Xcc in either cultivar, but it compromised the disease resistance to A. brassicicola in the resistant cultivar. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC) ethylene precursor did not change resistance of the either cultivar to C. higginsianum and Xcc. Effect of ACC pretreatment on the resistance to A. brassicicola was not distinguished between susceptible and resistant cultivars, because cultivar resistance of the resistant cultivar was lost by prolonged moist dark conditions. Taken together, exogenously applied SA, JA and ethylene altered defense signaling crosstalk to three diseases of anthracnose, black spot and black rot in a cultivar-dependent manner.

Resistant Properties of Water-Borne Acrylic Pressure Sensitive Adhesives for Automobile Protection (자동차 보호용 수계형 아크릴 점착제의 내성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo;Yoon, Cheol-Hun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • In order to improve resistant properties of water-borne acrylic pressure sensitive adhesives(PSAs) for automobiles, this study was carried out. Removable PSAs for automobiles were synthesized by emulsion polymerization of monomers, n-butyl acrylate(BA), n-butyl methacrylate(BMA), acrylonitrile(AN), acrylic acid(AA) and 2-hydroxyethyl methacrylate(2-HEMA), and AA and 2-HEMA could act as functional monomers for crosslink. Emulsion polymerization was carried out in a semi-batch type reactor. Water resistance, heat resistance, acid resistance, alkali resistance and smoke resistance were examined. As a result, water resistance increased with the amount of BMA, however, the effect of BMA content on the water resistance was insignificant at a range of over 14 wt%. The water resistance also increased with the amount of functional monomers, AA and 2-HEMA. The prepared PSAs satisfied all the standard for automobiles except heat resistance. However, the heat resistance comes nearly up to the standard. Also, acid resistance, alkali resistance and smoke resistance of the prepared PSAs satisfied with the standard.

Development of a Sunscreen Stick Formulation which is Water Resistant but Easily Washable

  • Choi, Minsung;Song, Seungjin;Kang, Nae-Gyu
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2020
  • The aim of this study is to develop a sunscreen stick formulation technology with excellent water resistance and washability. Consumers' needs for sunscreen products are diversifying. Water resistance and ease of washing are both important factors in sunscreen products. However, it is difficult to develop a sunscreen formulation that satisfies these two factors at the same time, because these two elements are in conflict. Fatty acid has a hydrophobic property against the water with low or neutral pH, but when it contacts with soapy water which has high pH, saponification occurs and the fatty acids become surfactants and can be dispersed in the water. Using the reaction characteristics of fatty acids, we can make sunscreen that is highly resistant to water or sweat, but is only selectively removed from soapy water. We found that the sunscreen stick containing fatty acids had better water resistance and washability than the sunscreen sticks without fatty acid. The sunscreen stick containing fatty acids showed a tendency to improve water resistance by scattering ultraviolet rays of long wavelength area by forming insoluble precipitation with divalent ions in tap water after immersion. In addition, an increase in the fatty acid content tended to also increase the ease of cleaning the sunscreen stick. Solid fatty acid was advantageous in improving water resistance than liquid fatty acid, but there was no difference between solid fatty acids and liquid fatty acid in washability. When it comes to stability, the sunscreen stick using liquid fatty acids maintained a high hardness and melting point, and showed no sweating. Based on this study, it is possible to develop an easy washable sunscreen stick formulation technology that has excellent water resistance but is selectively removed only in soapy water.

Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings (알루미늄 합금의 연속식 양극산화법으로 형성시킨 이중 산화막층의 특성)

  • Jeong, Nagyeom;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.1
    • /
    • pp.30-36
    • /
    • 2021
  • In this study, double-layered anodizing films were formed on Al 5052 and Al 6061 alloys consecutively first in sulfuric acid and then in oxalic acid, and hardness, withstand voltage, surface roughness and acid resistance of the anodizing films were compared with single-layered anodizing films in sulfuric acid and oxalic acid electrolytes. Hardness of the double-layered anodizing film decreased with increasing ratio of inner layer to outer layer for both Al 5052 and Al 6061 alloys, suggesting that outer anodizing film formed in sulfuric acid electrolyte is damaged during the second anodizing in oxalic acid electrolyte. Withstand voltage of the double-layered anodizing films increased with increasing the thickness ratio of inner layer to outer layer. Surface roughness of the double-layered anodizing films were comparable with that of single-layered anodizing film formed in sulfuric acid but higher than that of single layer anodizing film formed in oxalic acid electrolyte. In acid resistance test, all of the double-layered and single-layered anodizing films showed good acid resistance more than 3 h without any visible gas evolution, which is attributable to sealing of pores. Based on the experimental results obtained in this work, it is possible to design a double-layered anodizing film with cost-effectiveness and improved physical and electrical properties by combining two consecutive anodizing processes of sulfuric acid anodizing and oxalic acid anodizing methods.

Regulation of Salicylic Acid and N-Hydroxy-Pipecolic Acid in Systemic Acquired Resistance

  • Gah-Hyun, Lim
    • The Plant Pathology Journal
    • /
    • v.39 no.1
    • /
    • pp.21-27
    • /
    • 2023
  • In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR.

$^{31}p$ Nuclear Magnetic Resonance Studies of Acetic Acid Inhibition of Ethanol Production by Strains of Zymomonas mobilis

  • Kim, In-Seop;Barrow, Kevin D.;Rogers, Peter L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2003
  • In vivo $^31p$ Nuclear Magnetic Resonance ($^31p$NMR) and metabolic studies were carried out on an acetic acid tolerant mutant, Zymomonas mobilis $ZM4/Ac^R$, and compared to those of the parent strain, Z. mobilis ZM4, to evaluate possible mechanisms of acetic acid resistance. This investigation was initiated to determine whether or not the mutant strain might be used as a suitable recombinant host far ethanol production from lignocellulose hydrolysates containing various inhibitory compounds. $ZM4/Ac^R$ showed multiple resistance to other lignocellulosic toxic compounds such as syringaldehyde, furfural, hydroxymethyl furfural, vanillin, and vanillic acid. The mutant strain was resistant to higher concentrations of ethanol or lower pH in the presence of sodium acetate, compared to ZM4 which showed more additive inhibition. in vivo $^31p$ NMR studies revealed that intracellular acidification and de-energization were two mechanisms by which acetic acid exerted its inhibitory effect. For $ZM4/Ac^R$, the internal pH and the energy status were less affected by sodium acetate compared to the parent strain. This resistance to pH change and de-energization caused by acetic acid is a possible explanation for the development of resistance by this strain.

Biochemistry of Salicylic Acid and its Role in Disease Resistance

  • Lee, Hyung-Il;Raskin, Ilya
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.233-238
    • /
    • 1997
  • Salicylic acid (SA) is involved in the establishment of systemic acquired resistance (SAR) in many plant including tobacco. Considering the important role of SA in disease resistance, biosynthetic and metabolic pathways of SA in tobacco have been studied extensively: The initial step for biosynthetic pathway of SA is conversion of phenylalanine to trans-cinnamic acid, followed by decarboxylation of trans-cinnamic acid to benzoic acid and ie subsequent ring hydroxylation at the C-2 position to form SA. In TMV inoculated tobacco, most of the newly synthesized SA is glucosylated or methylated. Methyl salicylate has been identified as a biologically active, volatile signal. In contrast, the two glucosylated forms accumulate in the vicinity of lesions and consist of SA glucoside, a major metabolite, and SA glucose ester, a relatively minor from. Two enzymes involved in SA biosynthesis and metabolism have been purified and characterized : benzoic acid 2-hydroxylase which catalyzes conversion of benzoic acid to SA; UDP-Glucose: SA 1-O-D glucosyltransferase which converts SA to SA glucose ester. Further studies of the biosynthetic and metabolic pathways of SA will help to elucidate the SAR signal transduction pathway and provide potential tools for the manipulation of disease resistance.

  • PDF

Profiles of Non-aureus Staphylococci in Retail Pork and Slaughterhouse Carcasses: Prevalence, Antimicrobial Resistance, and Genetic Determinant of Fusidic Acid Resistance

  • Yang, Yu Jin;Lee, Gi Yong;Kim, Sun Do;Park, Ji Heon;Lee, Soo In;Kim, Geun-Bae;Yang, Soo-Jin
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.225-239
    • /
    • 2022
  • As commensal colonizers in livestock, there has been little attention on staphylococci, especially non-aureus staphylococci (NAS), contaminating meat production chain. To assess prevalence of staphylococci in retail pork and slaughterhouse carcass samples in Korea, we collected 578 samples from Korean slaughterhouses (n=311) and retail markets (n=267) for isolation of staphylococci and determined antimicrobial resistance phenotypes in all the isolates. The presence of and prevalence of fusB-family genes (fusB, fusC, fusD, and fusF) and mutations in fusA genes were examined in fusidic acid resistant isolates. A total of 47 staphylococcal isolates of 4 different species (Staphylococcus aureus, n=4; S. hyicus, n=1; S. epidermidis, n=10; Mammaliicoccus sciuri, n=32) were isolated. Fusidic acid resistance were confirmed in 9/10 S. epidermidis and all of the 32 M. sciuri (previously S. sciuri) isolates. Acquired fusidic acid resistance genes were detected in all the resistant strains; fusB and fusC in S. epidermidis and fusB/C in M. sciuri. Multi-locus sequence type analysis revealed that ST63 (n=10, 31%) and ST30 (n=8, 25%) genotypes were most prevalent among fusidic acid resistant M. sciuri isolates. In conclusion, the high prevalence of fusB-family genes in S. epidermidis and M. sciuri strains isolated from pork indicated that NAS might act as a reservoir for fusidic acid resistance gene transmissions in pork production chains.

Preparation and Curing Behavior of Polyurethane Coatings by Polyester/Lactone Polyol and HDI-biuret (폴리에스테르/락톤 폴리올과 HDI-Biuret에 의한 폴리우레탄 도료의 제조 및 경화거동)

  • 최용호;김대원;황규현;박홍수;김태옥
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.72-81
    • /
    • 2000
  • Benzoic acid polyester/lactone polyol were synthesized by polycaprolactone 0201 as diol, trimethylolpropane as triol, adipic acid as dibasic acid, and benzoic acid as monobasic acid. Polyisocyanate prepolymer Desmodur N-100 of HDI-biuret type was used in this study. Two-component polyurethane coatings were prepared by blending benzoic acid polyester/polycaprolactone, polyisocyanate, wetting/dispersing agent, white pigment, and flowing agent. Various properties were examined on the film coated with the prepared polyurethane. They showed excellent physical properties such as abrasion resistance, accelerated weathering resistance, and yellowness index. They also showed good physical properties such as flexibility, impact resistance, 60$^{\circ}$ specular gloss, cross hatch adhesion, hydrocarbon resistance, and lightness index difference. Hardness of coating showed a little poor character. The introduction of polycaprolactone 0201 as diol in the polyurethane coatings improved the hydrocarbon resistance, impact resistance, and flexibility of coatings. According to the drying and curing behavior with the contents of benzoic acid, they seem to have reasonable coating properties such as drying time of 2 to 4 hours and pot-life time of 20 to 37 hours.

  • PDF

Stability and Gastric Acid Resistance of Lactobacilli and Bifidobacteria in Commercial Yogurts (시판 요구르트 중 Lactobacilli 및 Bifidobacteria의 안정성 및 내산성 연구)

  • 이범진;박옥선;고준수;안태석;박승용
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.89-93
    • /
    • 1999
  • Stability and gastric acid resistance of Lactobacilli and Bifidobacteria in commercial yogurts were invcstigated. It was noted that there was significant differences of stability and gastric acid resistance among yo-wts. The sutvival of Lactobacilli and B#idohacleria in commercial yogurts decreased as a function of time during storage and showed in the range of $10^7$-$10^8$ cfulml. The lower the pH was, the lower survival of Lactobacillus and B~dobaclerium was observed. The survival of Lactobacillz and Bifidobacteria in three yogurts appeared to be $10^3$-10$^4$ cfuIml. In the case of yogurt containing Bifidobncterza- loaded capsules, the gastric acid resistance of the Rifidobncteria was greatly enhanced and the survival after treatment in a gastric juice for 120 min was over 10' cfulml.

  • PDF