• Title/Summary/Keyword: Acid regeneration

Search Result 448, Processing Time 0.025 seconds

High frequency somatic embryogenesis and plant regeneration of interspecific ginseng hybrid between Panax ginseng and Panax quinquefolius

  • Kim, Jong Youn;Adhikari, Prakash Babu;Ahn, Chang Ho;Kim, Dong Hwi;Kim, Young Chang;Han, Jung Yeon;Kondeti, Subramanyam;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.38-48
    • /
    • 2019
  • Background: Interspecific ginseng hybrid, Panax ginseng ${\times}$ Panax quenquifolius (Pgq) has vigorous growth and produces larger roots than its parents. However, F1 progenies are complete male sterile. Plant tissue culture technology can circumvent the issue and propagate the hybrid. Methods: Murashige and Skoog (MS) medium with different concentrations (0, 2, 4, and 6 mg/L) of 2,4-dichlorophenoxyacetic acid (2,4-D) was used for callus induction and somatic embryogenesis (SE). The embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 Schenk and Hildebrandt (SH) medium. The developed taproots with dormant buds were treated with $GA_3$ to break the bud dormancy, and transferred to soil. Hybrid Pgq plants were verified by random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses and by LC-IT-TOF-MS. Results: We conducted a comparative study of somatic embryogenesis (SE) in Pgq and its parents, and attempted to establish the soil transfer of in vitro propagated Pgq tap roots. The Pgq explants showed higher rate of embryogenesis (~56% at 2 mg/L 2,4-D concentration) as well as higher number of embryos per explants (~7 at the same 2,4-D concentration) compared to its either parents. The germinated embryos, after culturing on $GA_3$ supplemented medium, were transferred to hormone free 1/2 SH medium to support the continued growth and kept until nutrient depletion induced senescence (NuDIS) of leaf defoliation occurred (4 months). By that time, thickened tap roots with well-developed lateral roots and dormant buds were obtained. All Pgq tap roots pretreated with 20 mg/L $GA_3$ for at least a week produced new shoots after soil transfer. We selected the discriminatory RAPD and ISSR markers to find the interspecific ginseng hybrid among its parents. The $F_1$ hybrid (Pgq) contained species specific 2 ginsenosides (ginsenoside Rf in P. ginseng and pseudoginsenosides $F_{11}$ in P. quinquefolius), and higher amount of other ginsenosides than its parents. Conclusion: Micropropagation of interspecific hybrid ginseng can give an opportunity for continuous production of plants.

Effect of Medium Composition on in vitro Plant Root Regeneration from Axillary Buds of Cassava (Manihot esculenta Crantz) (카사바 액아배양 시 배지조성이 기내 식물체 발근에 미치는 영향)

  • Young Hee Kwon;Won IL Choi;Hee Kyu Kim;Kyung Ok Kim;Ju Hyoung Kim;Yong Sup Song
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.24-24
    • /
    • 2021
  • The Cassava (Manihot esculenta Crantz) is one of the major food crops in the tropical or subtropical regions. Recently, clean planting materials of improved cassava cultivars are in high demand. Problems in the propagation of cassava are virus vulnerable and low rates of seed germination. Thus, the study was undertaken to develop an efficient in vitro mass propagation protocol of Manihot esculenta Crantz. So we tried to optimize protocols for mass production from axillary buds of Cassava. Young and actively growing stem segments were excised from adult plants of cassava. Samples were cut into a 3~4 cm nodal segments with axillary buds, and cultivated in the different medium supplemented with various plant growth regulators for 4 weeks. For shoot multiplication, axillary buds approximately 1 cm in length were taken from in vitro derived shoots and subcultured. After 4~6 weeks, the shoot generation rate showed 55.6%. The shoot number and its length was 1.0/explant and 2.3 cm in the most favorable medium composition. The auxin β-indolebutyric acid(IBA) 0~2.0 mg/L was proved to be effective on root development. Plantlets with fibrous roots easily generated tuberous roots in vitro. The tuberous roots were induced only when both kinetin and IBA were used in combination. after 8 weeks, the root generation rate showed 100%. The root number and its length was 17.2/explant and 2.2 cm in the most promising medium composition. Our experiments confirmed that in vitro growth and multiplication of plantlets could depend on its reaction to the different medium composition, and this micropropagation techniques could be a useful system for healthy and vigorous plant production.

  • PDF

Embryogenesis and plant regeneration of Panax ginseng Meyer via anther culture and ploidy assessment using flow cytometry (인삼 약 배양을 통한 배 발생과 식물 재분화 및 유세포 분석기를 이용한 배수성 검정)

  • Jung-Woo Lee;Kyong-Hwan Bang;Dong-Hwi Kim;Jang-Uk Kim;Young-Chang Kim;Ick-Hyun Jo
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.19-26
    • /
    • 2023
  • Korean ginseng (Panax ginseng Meyer) is an economically important plant because of it is rich in saponins. It is mainly cultivated in Asia, including Korea and China. Since ginseng requires a long breeding period due to juvenility, homozygote production techniques, such as anther culture, must be urgently established. In the present study, callus induction and embryogenesis through anther culture were observed in P. ginseng. Murashige and Skoog medium was used as the basal medium suitable for callus induction. When the medium was supplemented with 3% sucrose, the callus induction rate was high and the callus size was large. Cold pretreatment did not significantly affect callus induction and embryogenesis. Embryogenesis was the most efficient when the embryo-formation medium was supplemented with 1.0 or 3.0 mg/L 2,4-dichlorophenoxyacetic acid. Cultivar significantly affected anther culture efficiency. Specifically, 'Cheongseon' showed the highest embryo-formation efficiency, whereas no embryogenesis occurred in 'Sunun'. Ploidy assessment revealed the haploid status of the induced calli. Embryos derived from anther culture formed shoots upon transfer to germination medium, although no difference in ploidy was noted between the induced callus and control. Overall, the anther culture conditions established in the present study may contribute to the production of homozygous P. ginseng plants in the future.

Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract (향나무추출물의 광손상으로부터 피부세포 보호와 자극완화 효과에 대한 연구)

  • 김진화;박성민;심관섭;이범천;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmental facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Juniperus chinensis xylem extract on the UV and SLS-induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. We found that Juniperus chinensis xylem extracts had potent radical scavenging effect by 98% at 100 $\mu\textrm{g}$/mL. Fluorometric assays of the proteolytic activities of matrix metalloproteinase-l(MMP-1, collagenase) were performed using fluorescent collagen substrates. UV A induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25 $\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. In this test Juniperus chinensis decreased expression of interleukin 6 about 30%. Expression of prostaglandin E$_2$, (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay (EIA) using PGE$_2$ monoclonal antibody. At the concentrations of 5-50 $\mu\textrm{g}$/mL of the extracts, the production of PGE$_2$ by HaCaT keratinocytes (24 hours after 10 mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p〈0.05). The viability of cultured HaCaT keratinocytes was significantly reduced at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB irradiation, but the presence of these extracts improved cell viability comparing to control after UVB irradiation. We also investigated the protective effect of this extract in sodium lauryl sulfate (SLS)-induced irritant skin reactions from 24 hour exposure. Twice a day application of the extract for reducing local inflammation in human skin was done. Irritant reactions were assessed by various aspects of skin condition, that is, erythema (skin color reflectance) and transepidermal water loss (TEWL). After 5 days the extract was found to reduce SLS-induced skin erythema and improve barrier regeneration when compared to untreated symmetrical test site. In conclusion, our results suggest that Juniperus chinensis can be effectively used for the prevention of UV and SLS-induced adverse skin reactions such as radical production, inflammation and skin cell damage.

Elimination of Grapevine fleck virus from infected grapevines 'Kyoho' through meristem-tip culture of dormant buds (휴면아 경정 배양법을 통한 포도 '거봉' 에서 Grapevine fleck virus의 제거)

  • Kim, Mi Young;Cho, Kang Hee;Chun, Jae An;Park, Seo Jun;Kim, Se Hee;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.401-408
    • /
    • 2017
  • Herein, we report the meristem-tip culture from dormant buds of grape 'Kyoho' single-infected with Grapevine fleck virus (GFkV), which is phloem-limited and transmitted by graft inoculation. We produced GFkV-free shoots without thermo- or chemotherapy using meristem-tip explants approximately 0.3 mm (73 explants) and 0.8 mm long (five explants) including shoot apical meristem, 2-5 leaf primordia, and 1-4 uncommitted primordia from dormant buds of the infected woody cuttings (stored at $4^{\circ}C$). Explants were cultured on Murashige and Skoog (MS) medium supplemented with 3% sucrose, 3.0 mg/L benzyladenine (BA) and 0.1 mg/L indole-3-butyric acid (IBA). After 16 weeks of culture, shoot (10-mm long) regeneration frequency achieved from 0.3-mm explants was 4.1% and that obtained from 0.8-mm explants was 40.0%. Virus-free efficiency (expressed as the percentage of RT-PCR negative shoots regenerated) from 0.3- and 0.8-mm explants was 100% and 50%, respectively. Following in vitro multiplication, RT-PCR assays revealed identical results to assays of the first regenerated shoots. Our new methodological approach could be applied for eliminating other viruses in grapevines, as well as for producing virus-free plants in many other deciduous tree species, including fruit trees.

EVALUATION OF OSTEOGENIC ACTIVITY AND MINERALIZATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS (배양된 인간 골막기원세포의 조골활성 및 골기질 형성의 평가)

  • Park, Bong-Wook;Byun, June-Ho;Lee, Sung-Gyoon;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.511-519
    • /
    • 2006
  • Autogenous bone grafts have been considered the gold standard for maxillofacial bony defects. However, this procedure could entail a complicated surgical procedure as well as potential donor site morbidity. Possibly the best solution for bone-defect regeneration is a tissue engineering approach, i.e. the use of a combination of a suitable scaffold with osteogenic cells. A major source of osteogenic cells is the bone marrow. Bone marrow-derived mesenchymal stem cells are multipotent and have the ability to differentiate into osteoblastic, chondrocytic, and adipocytic lineage cells. However, the isolation of cells from bone marrow has someproblems when used in clinical setting. Bone marrow aspiration is sometimes potentially more invasive and painful procedure and carries of a risk of morbidity and infection. A minimally invasive, easily accessible alternative would be cells derived from periosteum. The periosteum also contains multipotent cells that have the potential to differentiate into osteoblasts and chondrocytes. In the present study, we evaluated the osteogenic activity and mineralization of cultured human periosteal-derived cells. Periosteal explants were harvested from mandibule during surgical extraction of lower impacted third molar. The periosteal cells were cultured in the osteogenic inductive medium consisting of DMEM supplemented with 10% fetal calf serum, 50g/ml L-ascorbic acid 2-phosphate, 10 nmol dexamethasone and 10 mM -glycerophosphate for 42 days. Periosteal-derived cells showed positive alkaline phosphatase (ALP) staining during 42 days of culture period. The formation of ALP stain showed its maximal manifestation at day 14 of culture period, then decreased in intensity during the culture period. ALP mRNA expression increased up to day 14 with a decrease thereafter. Osteocalcin mRNA expression appeared at day 7 in culture, after that its expression continuously increased in a time-dependent manner up to the entire duration of culture. Von Kossa-positive mineralization nodules were first present at day 14 in culture followed by an increased number of positive nodules during the entire duration of the culture period. In conclusion, our study showed that cultured human periosteal-derived cells differentiated into active osteoblastic cells that were involved in synthesis of bone matrix and the subsequent mineralization of the matrix. As the periosteal-derived cells, easily harvested from intraoral procedure such as surgical extraction of impacted third molar, has the excellent potential of osteogenic capacity, tissue-engineered bone using periosteal-derived cells could be the best choice in reconstruction of maxillofacial bony defects.

The Effect of HCl Gas on Selective Catalytic Reduction of Nitrogen Oxide (질소산화물의 선택적 환원 제거시 염화수소기체가 촉매에 미치는 영향)

  • Choung, Jin-Woo;Choi, Kwang-Ho;Seong, Hee-Je;Chai, Ho-Jung;Nam, In-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.609-617
    • /
    • 2000
  • This study is aimed at investigating an effect of HCl gas on selective reduction of NOx over a CuHM and $V_2O_5-WO_3/TiO_2$ catalyst. SCR process is the most effective method to remove NOx, but catalyst can be deactivated by the acidic gas such as HCl gas which is also included in flue gas from the incinerator. In dry condition of flue gas, the CuHM catalyst treated by HCl gas has shown higher NO removal activity than the fresh catalyst. The activity of the catalyst can be restored by treating at $500^{\circ}C$. On the contrary. $V_2O_5-WO_3/TiO_2$ catalyst is obviously deactivated by HCl and the deactivation increases in proportion to the concentration of HCl gas. The deactivated catalyst is not restored to it's original activity by heat treatment for regeneration. In wet flue gas stream, the CuHM catalyst has shown lower activity than fresh catalyst and $V_2O_5-WO_3/TiO_2$ catalyst was severely deactivated by HCl treatment. The activity loss of catalysts are mainly due to the decrease of Br$\ddot{o}$nsted acid site on the catalyst surface by $NH_3$ TPD. The change of BET surface area of CuHM catalyst after the reaction isn't observed but $V_2O_5-WO_3/TiO_2$ catalyst is observed. The amount of $Cu^{{+}{+}}$ and $V_2O_5$ is decreased after the reaction. From these results, it is expected that CuHM catalyst should be better than $V_2O_5-WO_3/TiO_2$ catalyst for its application to the incineration of flue gas.

  • PDF

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.