• Title/Summary/Keyword: Acid leaching solution

Search Result 181, Processing Time 0.024 seconds

The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning (더미 미생물용출에 의한 폐-광석으로부터 유용금속 용해 특성과 Fe 제거와 전기분해를 이용한 금속구리분말 회수)

  • Kim, Bong-JuK;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2014
  • In order to recover the metallic copper powder from the mine-waste rock, heap bioleaching, Fe removal and electrowinning experiments were carried out. The results of heap leaching with the mine-waste rock sample containing 0.034% Cu showed that, the leaching rate of Cu were 61% and 62% in the bacteria leaching and sulfuric acid leaching solution, respectively. Sodium hydroxide (NaOH), hydrogen peroxide ($H_2O_2$) and calcium hydroxide ($Ca(OH)_2$) were applied to effectively remov Fe from the heap leaching solution, and then $H_2O_2$ was selected for the most effective removing Fe agent. In order to prepare the electrolytic solution, $H_2O_2$ were again treated in the heap leaching, and Fe removal rates were 99% and 60%, whereas Cu removal rates were 5% and 7% in the bacteria and sulfuric acid leaching solutions, respectively. After electrowinning was examined in these leaching solution, the recovery rates of Cu were obtained 98% in bacteria and obtained 76% in the sulfuric leaching solution. The dendritic form of metallic copper powder was recovered in both leaching solutions.

The Leaching Behavior of Unirradiated $UO_2$ Pellets in Wet Storage and Disposal Conditions

  • Park, Geun-Il;Lee, Hoo-Kun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.349-358
    • /
    • 1996
  • The leaching behavior of uranium from unirradiated CANDU UO$_2$ fuel pellet in the spent fuel wet storage and disposal conditions has been investigated. A modified IAEA leach test method was used, and then the extent of leaching was monitored by analysis for uranium in the leachant. The leach test has been performed in various leachants(demineralized water and boric acid solution at pH=6, synthetic granite groundwater) for a long-term period of 5.4 years, and the effect of temperature on the leach rate of uranium has been analyzed. The leach rates of uranium at $25^{\circ}C$ were dependent on the leachants. Over initial 100 days of leach periods, the leach rate in groundwater was the highest in three leachants and no significant differences of leach rates ore observed in the demineralized oater and boric acid solution. But these leach rates in three leachants around 2,000 days at $25^{\circ}C$ appeared to be reached the steady rates in the range of 1~5$\times$10$^{-8}$ g/$\textrm{cm}^2$ day. The leach rate of uranium in groundwater shooed to be independent of the temperature, but those in both demineralized water and boric acid solution increased with temperature. These results show that the leaching behavior of uranium from UO$_2$ fuel in both the demineralized water ann boric acid may be controlled tv the surface oxidative.dissolution reaction of UO$_2$ and the leach rate of uranium in groundwater at room temperature could mainly be controlled by the complex reaction of dissolved uranyl ions with carbonate ions and no variation of leach rate of UO$_2$ in groundwater with temperature may be due to the local deposition of passivating uranyl phases on the surface.

  • PDF

Separation of Copper & Cobalt by Solvent Extraction in Organic Acid Leaching Solution (유기산 침출용액에서 용매추출법에 의한 구리 및 코발트 분리)

  • Kim, Tae-Young;Ryu, Seong-Hyung;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.3-10
    • /
    • 2015
  • A study has been made on the recovery & separation of cobalt and copper from organic acid leaching solution by solvent extraction. The experimental parameters such as the equilibrium pH, concentration of extractant and phase ratio were observed. Copper was extracted using LIX 84 and Cobalt was extracted using cyanex 272 and versatic acid 10. Experimental results showed that extraction percent of copper was 99% at above eq. pH 2.0 and then more than 90% of cobalt were extracted by cyanex 272 in eq. pH 6.0 and versatic acid 10 in eq. pH 7.5. Stripping of copper and cobalt from the loaded organic phases can be accomplished by sulfuric acid as a stripping reagent and 120 ~ 150 g/L of $H_2SO_4$ was effective for the stripping of copper and cobalt respectively. Finially, the basic optimal process for recovery of copper and cobalt from the bio-leaching solution was proposed.

Recovery of Molybdenum and Vanadium from Acidic Leaching Solution of Spent Catalysts by Solvent Extraction (폐촉매(廢觸媒) 산성침출액(酸性浸出液)으로부터 용매추출(溶媒抽出)에 의한 몰리브덴과 바나듐의 회수(回收))

  • Nguyen, Hong Thi;Lee, Man Seung
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.3-11
    • /
    • 2013
  • The recovery of molybdenum and vanadium from acid leaching solutions of spent catalysts using solvent extraction has been investigated. Among various acid leaching solutions, sulfuric acid solution is found to be adequate for the recovery of these two metals. The extraction and stripping behavior of the two metals in the absence and presence of other impurity metals by various types of extractants such as cationic, solvating, amine and a mixture of cationic and solvating extractants was discussed. Each type of extractants has advantage and disadvantage in terms of the possibility of separation and of forming a third phase. Among the various types of extractants, a mixture of cationic and solvating extractants seems to be the most promising extractant system for the separation of Mo and V from the acid leaching solutions of spent catalysts.

Characteristics of Elements Extraction in Waste Rocks on the Abandoned Jangpoong Cn Mine (장풍 동광산 폐광석 내 원소의 용출 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.695-708
    • /
    • 2008
  • In order to evaluate the geochemical behaviors of elements with waste rocks in the abandoned Jangpoong Cu mine area, total concentration analysis and leaching experiments were performed. The content of elements within waste rocks compared with background values decreased in order of As>>Cu>Pb>Cd>Co. Leaching experiments were carried out at various extraction environments, considering the acid rain ($0.00001{\sim}0.001N\;HNO_3$) and the acid mine drainage ($0.001{\sim}0.1N$ HNO3). After 24 hours of reaction with different acidic solution, the leaching characteristics of waste rocks were classified into three types according to final pH of leaching solution. Type I refers to the case that the final pH of leaching solution was lower than that of the reaction solution due to the dissolution of acidic minerals from rocks, while type 2 and 3 refer to the case that the final pH maintained higher than that of the reaction solution. Theses types include in acid buffering minerals such as clay minerals and carbonate minerals. The leaching characteristics of the elements after the reaction could be categorized into As-Co-Fe, Cu-Mn-Cd-Zn, and Pb. As-Co-Fe started to get leached under 2.5 of pH regardless of changes in the final pH, and Cu-Mn-Cd-Zn showed different initial leaching pH according to the types of final pH changes. Based on the pH value where leaching started regardless of leaching concentration, the relative mobility of each element was in the order of Mn Zn>Cd>Cu>>Fe Co>As>Pb. Thus, more higher mobility elements(Zn, Mn and Cu) were leached by reacting with acid rain water. Acid mine drainage may result in distributions of elements having relatively less mobility(As, Fe, Co and Pb).

Decomposition and Leaching of Bastnasite by Sulfation and Recovery of Cerium Hydroxide from Leached Solution (황산화반응에 의한 불탄산염 희토류광(Bastnasite)의 분해, 침출 및 세륨수산화물의 회수)

  • Yoon, Ho-Sung;Kim, Sung-Don;Kim, Chul-Joo;Kim, Jun-Soo;Han, Choon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.407-412
    • /
    • 1998
  • This study was carried out to investigate the optimum leaching conditions for the sulfation and water leaching, and separation of cerium from rare earth elements in leached solution by acid-adjusting method. The optimum conditions for the sulfation and water leaching from bastnasite concentrates are that the equivalent ration of sulfuric acid to concentrates is 2.5, calcination temperature and time are $600^{\circ}C$ and 2 hrs respectively, and the pulp density in the water leaching is 9.1%. The yield of rare earth oxide is about 93% at the above condition. The process of recovery of cerium hydroxide from leached solution by acid-adjusting method was carried out as following steps. The first step is the oxidation of the solution at pH 5 by using twice the equivalent of $H_2O_2$ solution as an oxidant. The second step is the precipitation to obtain cerium complex salt and cerium hydroxide after lowering the solution to pH 2. The last step is the oxidation-precipitation by using equivalent of $H_2O_2$ solution. From these results, it was possible to prepare cerium hydroxide with the yield of 60% and the quality of 80%.

  • PDF

Selective leaching of valuable metals (Au, Ag etc.) from waste printed circuit boards (PCB)

  • Oh, Chi-Jung;Lee, Sung-Oh;Song, Jin-Kon;Kook, Nam-Pyo;Kim, Myong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This study was carried out to recover gold, silver and other valuable metals from the printed circuit boards (PCB) of waste computers. PCB samples were crushed to under 1mm by a shredder and initially separated into 30% conducting and 70% non-conducting materials by an electrostatic separator. The conducting materials, which contained the valuable metals, were then used as the feed material for magnetic separation where it was found that 42% was magnetic and 58% non- magnetic. The non-magnetic materials contained 0.227mg/g Au and 0.697mg/g Ag. Further leaching of the non-magnetic component using 2.0M sulfuric acid and 0.2M hydrogen peroxide at 85$^{\circ}C$ extracted more than 95% copper, iron, zinc, nickel and aluminium. Au and Ag were not extracted in this solution, however, more than 95% of Au and 100% of Ag were selectively leached with a mixed solvent (0.2M ammonium thiosulfate, 0.02M copper sulfate, 0.4M ammonium hydroxide). Finally, the residues were reacted with a NaCl solution to leach out Pb while sulfuric acid was used to leach out Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

Leaching of the Mixture of Metallic Gold and Silver (금과 은 금속혼합물의 침출)

  • Xing, Weidong;Lee, Manseung
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • In order to exclude the effect of uneven distribution of gold in anode slime, the dissolution of gold and silver from the metal mixture was investigated in different systems, such as the mixture of hydrochloric acid and oxidizing reagents ($H_2O_2$, NaClO and $HNO_3$), thiosulfate and thiourea. In the mixture of HCl and either $HNO_3$ or $H_2O_2$, Au was completely dissolved but the leaching percentage of Ag was around 1%. In both thiosulfate and thiourea solution, gold was not dissolved at all. The presence of ferric ion in acidic thiourea solution showed a favorable effect on the leaching of silver but further study is necessary to elucidate the combined effect of ferric ion and sulfuric acid.

A Study on The Comparison of Leaching Methods and Stability of Cement Mortar Solidified Cadmium sludge (시멘트고화에 의한 카드뮴슬러지의 안정성 및 용출실험방법 비교 검토)

  • 주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • This study was Performed to evaluate the effective solidification of Cd sludge using cement and power plant fly ash as cement admixture, to identify the leaching characteristics of the heavy metal Cd sludge solidified, and to develope proper KLT(Korean Leaching Test) of hazardous waste. KLT was compared with EPT(Extraction Procedure Toxicity) and TCLP(Toxicity Characteristics Leaching Procedure). Fly ash contents ranged from 0% to 30% of cement weight. The experimental results showed that the optimum amount of fly ash replaced was 10% to 15% and KLT was less appropriate than EPA and TCLP. Also the purpose of the study was to suggest the modification factors on the leaching test currently used, based on the above mentioned aspects. The effects of pH, leaching time, leaching for agitating intensity, and leaching solvent were investigated. As the result of test, the leaching potential was relatively high when the pH and agitation intensity of leaching solution were 5 and 150rpm, respectively. Leaching time of six hours was found to be sufficient and the use of acetic acid as a leaching solvent is more useful in landfill site particularly.

Preparation of $Mg(OH)_2$and MgO from Acid Leaching $Mg^{++}$ Solution (산 침출$Mg^{++}$액으로부터 $Mg(OH)_2$및 MgO 粉末의 製造)

  • 최용각;이종현;원창환;이갑호
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.16-21
    • /
    • 2001
  • Ultrafine $Mg(OH)l_2$and MgO powders were recovered from the waste solution containing $Mg^{++}$ which was a by-product of SHS (Self-propagating High temperature Synthesis)process. The optimum experimental conditions to prepare $Mg(OH)_2$were 13.0 of pH and 0.7M of $Mg^{++}$ content with addition of 9M of KOH as a pH regulator in acid leaching solution. Complete pre-cipitation of Mg(OH)$_2$from $Mg^{++}$ was realized at that condition. The dehydration reaction of the prepared Mg(OH)$_2$was studied by DSC, and the result was used for calcination process. In order to obtain MgO powder, dried Mg(OH)2 powder was calcined at $400~450^{\circ}C$. Particle size and shape of the prepared $Mg(OH)_2$and MgO powder was similar to those of the commercial powders.

  • PDF