• Title/Summary/Keyword: Acid leachate

Search Result 91, Processing Time 0.021 seconds

Adsorption-Desorption, Leaching, and Degradation Pattern of Fungicide Fluazinam in the Soil Environment (살균제 Fluazinam의 토양환경 중 흡.탈착, 용탈 및 분해양상)

  • Hu, Won;Lee, Seog-June;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.128-133
    • /
    • 1997
  • This study was conducted to evaluate the adsorption, desorption, leaching and degradation pattern of fungicide fluazinam in the soil environment under the laboratory conditions. The mode of isothermal adsorption of fluazinam in soil was coincident with the Freundlich equation. The adsorption amount of fluazinam was much higher on soils containing organic matter than on soils oxidized with hydrogen peroxide. The presence of organic matter, humic acid or fulvic acid, increased the adsorption amount of fluazinam on soils. The Freundlich constant K was much higher in soil added with humic acid than in soil added with fulvic acid. The desorption ratio of fluazinam adsorbed to soil was increased by removal of organic matter. In leaching experiment using soil column, the fluazinam applied on the soil surface was not moved down to the bottom of soil and was not detected in leachate water. The degradation of fluazinam was faster in Soil I with rich organic matter than Soil II with poor organic matter, in non-sterilized soil than sterilized soil, and in flooded soil than unflooded soil.

  • PDF

Seasonal Variations of Water Quality within the Waste Impoundments of Geopung Mine (거풍 폐광산 폐기물 적치장 지하수 및 침출수 수질의 시기별 변화)

  • Ahn, Joo-Sung;Yim, Gil-Jae;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • In this study, water quality variation in borehole groundwaters and surface leachate waters were investigated on a seasonal sampling and remote monitoring basis within the waste impoundments at the Geopung mine site where previous rehabilitation measures were unsuccessful to prevent acidic drainage. All groundwaters were typical acidic drainage with acidic pH (3.3${\sim}$4.6) and high TDS (338${\sim}$3330 mg/L) values during the dry season, but increases in metal contents (TDS 414${\sim}$4890 mg/L) and decrease of pH (2.7${\sim}$3.6) were observed during the rainy season. Surface leachate waters showed a similar pattern in water quality variation. Surface runoff waters during rain events had acidic pH (3.0${\sim}$3.4) through direct reactions with waste rocks. Good correlations were found between major and trace elements measured in water samples, but no significant seasonal variation in chemical compositions was shown except relative changes in contents. It can be suggested that dissolution of soluble secondary salts caused by flushing of weathered waste rocks and tailings directly influenced the water quality within the waste impoundments. Increases in acid and metal concentrations and their loadings from mine wastes are anticipated in the rainy season. More appropriate cover systems on waste rocks and tailings necessitate consideration of more extreme conditions in the study mine.

Case Studies of Geophysical Mapping of Hazard and Contaminated Zones in Abandoned Mine Lands (폐광 부지의 재해 및 오염대 조사관련 물리탐사자료의 고찰)

  • Sim, Min-Sub;Ju, Hyeon-Tae;Kim, Kwan-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.525-534
    • /
    • 2014
  • Environmental problems typically occurring in abandoned mine lands (AML) include: contaminated and acidic surface water and groundwater; stockpiled waste rock and mill tailings; and ground subsidences due to mining operations. This study examines the effectiveness of various geophysical techniques for mapping potential hazard and contaminated zones. Four AML sites with sedimentation contamination problems, acid mine drainage (AMD) channels, ground subsidence, manmade liner leakage, and buried mine tailings, were selected to examine the applicability of various geophysical methods to the identification of the different types of mine hazards. Geophysical results were correlated to borehole data (core samples, well logs, tomographic profiles, etc.) and water sample data (pH, electrical conductivity (EC), and heavy metal contents). Zones of low electrical resistivity (ER) corresponded to areas contaminated by heavy metals, especially contamination by Cu, Pb, and Zn. The main pathways of AMD leachate were successfully mapped using ER methods (low anomaly peaks), self-potential (SP) curves (negative peaks), and ground penetrating radar (GPR) at shallow penetration depths. Mine cavities were well located based on composite interpretations of ER, seismic tomography, and well-log records; mine cavity locations were also observed in drill core data and using borehole image processing systems (BIPS). Damaged zones in buried manmade liners (used to block descending leachate) were precisely detected by ER mapping, and buried rock waste and tailings piles were characterized by low-velocity zones in seismic refraction data and high-resistivity zones in the ER data.

Behaviors of Chloronicotinyl Insecticide Acetamiprid in Soil (Chloronicotinyl계 살충제 Acetamiprid의 토양 환경중 동태)

  • Hong, Min-Kee;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.162-168
    • /
    • 2001
  • This study was conducted to evaluate the degradation, adsorption and desorption and leaching of acetamiprid in soils. The half-life of acetamiprid in field condition was $1.7{\sim}3.3$ days in Bokhyun soil and, in case of laboratory condition, 15.5 days. Adsorption of acetamiprid was equilibrated in 12 hours incubation. In adsorption experiment using modified soils, such as oxidized soil, oxidized soil added humic acid, fulvic acid, kaolinite or montmorillinite, adsorption rate of acetamiprid was the highest in the oxidized soil added fulvic acid. The desorption rate was the lowest in the oxidized soil added fulvic acid. The adsorption and desorption results should be suggested that acetamiprid could be strongly adsorbed with soil humic materials, especially fulvic acid. When the mobility of acetamiprid in soil was calculated according to GUS (Groundwater Ubiquity Score) equation, it was prove to non-leacher, and it was confirmed in the leaching experiment with soil column. Most of acetamiprid was remained in the upper 30 cm of the soil column after eluting with water and it was not even detected in leachate.

  • PDF

Fly Ash Application for Reduction of Acid Mine Drainage (AMD) as Runoff and Leachate Released from Mine Waste Disposal Sites

  • Oh, Se Jin;Moon, Sung Woo;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.533-539
    • /
    • 2014
  • Mine wastes such as acid mine drainage (AMD) can cause the detrimental effects on surrounding environment, thereby eventually threatening human health. Main objective of this study was to evaluate the neutralizing effect of fly ash (FA) as a stabilizing material AMD. Field plot was constructed in a coal waste depot which has caused aluminium-whitening adjacent to the stream. Different mixing ratios of FA were applied on a top of the soil, and then the physicochemical properties of runoff and soil were monitored. Constructed plots were as following: control (mine waste only (W)), mine waste + 20% ($w\;w^{-1}$)of FA (WC20M), mine waste + 40% ($w\;w^{-1}$)of FA (WC40M), and WC40M dressed with a fresh soil at the top (WC40MD). Result showed that initial pH of runoff in control was 5.09 while that in WC40M (7.81) was significantly increased. For a plot treated with WC40M, the concentration of Al in runoff was decreased to $0.22mg\;L^{-1}$ compared to the W as the control ($4.85mg\;L^{-1}$). Moreover, the concentration of Fe was also decreased to less than half at the WC40M compared to the control. Application of FA can be useful for neutralizing AMD and possibly minimizing adverse effect of AMD in mining area.

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

국내 토양공정법과 산처리 방법의 비교: 최종 pH와 용출률의 관계

  • 이평구;최선규;오창환;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.46-51
    • /
    • 2000
  • Environmental quality regulations are used to establish the maximum permissible concentrations of heavy metals before a site can be deemed to be polluted or contaminated. This paper compares the results obtained by 0.IN HCl extraction and acid extraction method(HNO$_3$+HClO$_4$.HCl). The leaching efficiency of 0.1N HCl extraction is directly proportional to the final pH of leachate, due to the different solubilities of the heavy metals at different pH values, The severe differences between 0.1N HCl-extractable and total metal contents result mainly from the buffering effect of carbonates, present in sediment. samples. Application of sequential extraction experiments to some sediments collected from gully pot in Seoul illustrates a much stronger scavenging effect by Fe and Mn-hydroxides, carbonates and organic phases. As deduced from both sequential extraction and leaching experiments, the relative mobility of heavy metals is found to be: Mn>Zn>>Co>Cd>>Cu>Pb>Cr>Fe, in spite of large differences in heavy metal content and localization. Changes in the physicochemical environments (such as acidification) caused by a traffic accident may result in the severe environmental pollution of heavy metals of surrounding area( surface water and rivers).

  • PDF

Characteristics of Chromium, Copper, and Arsenic Leaching from CCA-Treated Wood (CCA 방부처리 목재로부터 크롬, 구리 및 비소의 용탈 특성)

  • Kim, He-Kap;Kim, Dong-Jin
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • A laboratory experiment was conducted to study the characteristics of leaching of Cr, Cu, and As from chromated topper arsenate (CCA)-treated wood. The wood species tested was hemlock spruce ($10\;cm\;{\times}\;10\;cm\;{\times}\;10\;cm\;tube$). The leaching experiment was conducted over 60 days using I L of leachants whose pHs were adjusted to 2.0, 3.7, and 1.6, respectively with nitric acid, and also using lake water, according to the OECD guideline. Each leachate was analyzed for Cr and Cu using flame-AAS, and for As using vapor generation-AAS. Three metals were loathed at the highest levels at pH 2.0 but almost at similar levels at the other conditions. Cumulative quantifies over 60 days of a leaching period were in order of As>Cu>Cr. As was predicted to leach with an increase in flux over a 10 year period, while Cr and Cu fluxes were predicted to decrease with time. This result suggest that arsenic can pose a health risk to humans over a long period of time, when CCA-treated wood is used for building facilities (e.g., playgrounds, residential purposes, etc.) with which humans frequently contact.

PHYSICOCHEMICAL CHARACTERIZATION OF UASB GRANULAR SLUDGE WITH DIFFERENT SIZE DISTRIBUTIONS

  • 안영희;송영진;이유진;박성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.172-181
    • /
    • 2001
  • Upflow anaerobic sludge blanket (UASB) system employs granular sludge to treat various wastewaters including landfill leachate. CH$_4$ production of the granules determines overall performance of a UASB reactor. Sludge granules are developed by self-granulation of microorganisms and dynamic balance between granule growth and decay results in coexistence of granules with different sizes in the reactor. In this study, granules taken from a laboratory-scale UASB reactor were classified into 4 groups based on their diameters and their Physicochemical characteristics we were investigated. Each group was analyzed for settling ability, specific methanogenic activity (SMA), and elemental content. Settling ability was proportional to granule diameter. suggesting effective detainment of larger granules in the reactor. When acetate or glucose was used as a substrate, all groups showed relatively slight difference in SMA. However SMA with a volatile fatty acid mixture showed significant increase with granule diameter, suggesting better establishment of syntrophic relationship in larger granules. Larger granules showed higher value of SMA upon environmental changes (i.e., PH, temperature, or toxicant concentration). Comparative analysis of elemental contents showed that content (dry weight %) of most tested elements (iron, calcium, phosphorus, zinc, nickel. and manganese) deceased with granule diameter, suggesting importance of these elements for initial granulation. Taken together, this study verified experimentally that Physicochemical Properties of granules are related to granule size distributions. Overall results of physicochemical characterization supports that larger.

  • PDF

Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction

  • Suh, Yong Jae;Do, Thi May;Kil, Dae Sup;Jang, Hee Dong;Cho, Kuk
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • We produced magnetite nanoparticles (MNPs) and a Mg-rich solution as a nano-adsorbent and a coagulant for water treatment, respectively, using a low-grade iron ore. The ore was leached with aqueous hydrochloric acid and its impurities were removed by solvent extraction of the leachate using tri-n-butyl phosphate as an extractant. The content of Si and Mg, which inhibit the formation of MNPs, was reduced from 10.3 wt% and 15.5 wt% to 28.1 mg/L and < 1.4 mg/L, respectively. Consequently, the Fe content increased from 68.6 wt% to 99.8 wt%. The high-purity $Fe^{3+}$ solution recovered was used to prepare 5-15-nm MNPs by coprecipitation. The wastewater produced contained a large amount of $Mg^{2+}$ and can be used to precipitate struvite in sewage treatment. This process helps reduce the cost of both sewage and iron-orewastewater treatments, as well as in the economic production of the nano-adsorbent.